Трябва да сте влезли в
-
moreX
-
Компоненти
-
-
Category
-
Полупроводници
- Диоди
- Тиристори
- Електроизолирани модули
- Изправителни мостове
-
Транзистори
- Транзистори | GeneSiC
- Модули SiC MOSFET | Mitsubishi
- Модули SiC MOSFET | STARPOWER
- ABB SiC MOSFET модули
- IGBT модули | MITSUBISHI
- Транзисторни модули | MITSUBISHI
- MOSFET модули | MITSUBISHI
- Транзисторни модули | ABB
- IGBT модули | POWEREX
- IGBT модули | INFINEON (EUPEC)
- Полупроводникови елементи от силициев карбид
- Go to the subcategory
- Драйвeри
- Силови блокове
- Go to the subcategory
-
Електрически преoбразователи
-
Токови преoбразователи LEM
- Токов преобразовател със затворена верига на обратна връзка (C/L)
- Токов преобразовател с отворена верига на обратна връзка (O/L)
- Токов преобразовател захранван с еднополюсно напрежение
- Преобразователи в технология Eta
- Високоточни токови преобразуватели LF xx10 серия
- Преобразуватели на ток от серия LH
- HOYS и HOYL - предназначени за директно монтиране върху проводникова шина
- Настоящи преобразуватели в SMD технологията от сериите GO-SME и GO-SMS
- АВТОМОБИЛНИ токови преобразуватели
- Go to the subcategory
-
Преобразуватели на напрежение | LEM
- Напреженови преобразователи серия LV
- Напреженови преобразователи серия DVL
- Прецизни напреженови преобразователи с двойна магнитна сърцевина серия CV
- Тягов напреженов преобразовател DV 4200/SP4
- Преобразуватели на напрежение от серията DVM
- Преобразувател на напрежение - DVC 1000-P
- Преобразуватели на напрежение - серия DVC 1000
- Go to the subcategory
- Прецизни токови преобразуватели | LEM
- Go to the subcategory
-
Токови преoбразователи LEM
-
Пасивни компоненти (кондензатори, резистори, предпазители, филтри)
- Резистори
-
Предпазители
- Миниатюрни предпазители за електронни системи серия ABC и AGC
- Бързи тръбни предпазители
- Закъснителни вложки с характеристика GL/GG и AM
- Ултрабързи стопяеми вложки
- Бързи предпазители британски и американски стандарт
- Бързи предпазители европейски стандарт
- Тягови предпазители
- Високоволтни предпазителни вложки
- Go to the subcategory
-
Кондензатори
- Кондензатори за двигатели
- Електролитни кондензатори
- Кондензатори тип snubbers
- Кондензатори за мощност
- Кондензатори за DC (постояннотокови вериги)
- Кондензатори за компенсиране на мощност
- Високоволтови кондензатори
- Кондензатори за индукционно нагряване
- Кондензатори за съхранение на импулси и енергия
- DC LINK кондензатори
- Кондензатори за AC/DC вериги
- Go to the subcategory
- Филтри EMI (против смущения)
- Суперкондензатори
-
Защита от пренапрежение
- Защита от пренапрежение за коаксиални приложения
- Защита от пренапрежение за системи за видеонаблюдение
- Защита от пренапрежение за захранващи кабели
- Ограничители за пренапрежение за LED
- Ограничители за пренапрежение за фотоволтаици
- Защита на системата за претегляне
- Защита от пренапрежение за Fieldbus
- Go to the subcategory
- Go to the subcategory
-
Релета и контактори
- Теория- релета и контактори
- Полупроводникови релета АС 3-фазни
- Релета полупроводникови DC
- Регулатори, управляващи системи и аксесоари
- Системи за мек старт и реверсивни контактори
- Електромеханични релета
- Контактори
- Ротационни превключватели
-
Полупроводникови релета АС 1-фазни
- Полупроводникови релета AC еднофазни серия 1 | D2425 | D2450
- Полупроводникови релета AC еднофазни серия CWA I CWD
- Полупроводникови релета AC еднофазни серия CMRA I CMRD
- Полупроводникови релета АС ендофазни серия PS
- Полупроводникови релета AC двойни и четворни серия D24 D, TD24 Q, H12D48 D
- 1-фазни полупроводникови релета серия gn
- Полупроводникови релета АС серия ckr
- Релета AC еднофазни на шина DIN серия ERDA и ERAA
- Еднофазни AC релета за ток 150А
- Двойни полупроводникови релета, интегрирани с радиатор за DIN шина
- Go to the subcategory
- Полупроводникови релета АС 1-фазни, за печатни платки
- Интрфейс релета
- Go to the subcategory
- Индукционни елементи
- Радиатори, Bаристори, Tермични защити
- Вентилатори
- Климатизация, Оборудване за електрически шкафове, Охладители
-
Батерии, зарядни устройства, буферни захранвания и инвертори
- Батерии, зарядни устройства - теоретично описание
- Литиево-йонни батерии. Персонализирани батерии. Система за управление на батерията (BMS)
- Батерии
- Зарядни устройства и аксесоари за батерии
- UPS резервно захранване и буферни захранвания
- Преобразуватели и аксесоари за фотоволтаици
- Енергиен запас
- Горивни клетки
- Литиево-йонни батерии
- Go to the subcategory
-
Автоматика
- Futaba Drone Parts
- Крайни изключватели, Микроизключватели
- Датчици, Преобразователи
- Пирометри
- Броячи, Времеви релета, Панелни измервателни прибори
- Промишленни защитни устройства
- Светлинна и звукова сигнализация
- Термокамера
- Екрани LED
- Управляваща апаратура
-
Регистратори
- Регистратор на температура със запис на лента и цифров показател - AL3000
- Микропроцесорни регистратори с екран LCD серия KR2000
- Регистратор KR5000
- Измервател със функция за регистриране на влажност и температура HN-CH
- Експлоатационни материали за регистратори
- Компактен графичен регистратор 71VR1
- Регистратор KR 3000
- Регистратор РС серия R1M
- Регистратори РС серия R2M
- Регистратор РС - 12 изолирани входа– RZMS
- Регистратор PC, USB, 12 изолирани входа – RZUS
- Go to the subcategory
- Go to the subcategory
-
Проводници, Кабел литцендрат, Кабелни канали, Меки връзки
- Проводници
- Кабел литцендрат
-
Кабели за специални приложения
- Компенсиращи и удължаващи проводници
- Проводници за термодвойки
- Съединителни проводници за РТ датчици
- Многожилни проводници темп. -60C до +1400C
- SILICOUL проводници средно напрежение
- Запалителни проводници
- Нагревателни проводници
- Едножилни проводници темп. -60C до +450C
- Проводници за ЖП приложения
- Нагревателни проводници в Ех изпълнение
- Go to the subcategory
- Кабелни канали
-
Плетени кабели
- Плоски плетени кабели
- Кръгли плетени кабели
- Много гъвкави плетени кабели - плоски
- Много гъвкави плетени кабели - кръгли
- Медни цилиндрични плетени кабели
- Медни цилиндрични плетени кабели и канали/кожуси
- Гъвкави заземяващи ленти
- Плетени проводници от оцинкована и неръждясваща стомана
- Медни изолирани плетени проводници PCV -температура до 85 градуsа по C
- Плоски плетени алуминиеви проводници
- Комплект за подсъединение - плетени проводници и тръбички
- Go to the subcategory
- Оборудване за тяга
- Кабелни накрайници
- Изолирани еластични шини
- Многослойни еластични шини
- Системи за провеждане на кабели (шлауфи)
- Кабелни канали / маркучи
- Go to the subcategory
- View all categories
-
Полупроводници
-
-
- Suppliers
-
Applications
- AC и DC задвижвания (инвертори)
- CNC машинни инструменти
- Energy bank
- HVAC автоматизация
- Двигатели и трансформатори
- Заваръчни машини и заваръчни машини
- Захранващи (UPS) и токоизправителни системи
- Измерване и регулиране на температурата
- Измерване и регулиране на температурата
- Индукционно отопление
- Индустриална автоматизация
- Индустриална автоматизация
- Индустриални защитни устройства
- Компоненти за потенциално експлозивна атмосфера (EX)
- Машини за сушене и обработка на дървесина
- Машини за термоформоване на пластмаси
- Минно дело, металургия и основаване
- Оборудване за разпределителни, контролни и телекомуникационни шкафове
- Печат
- Трамвайна и железопътна тяга
-
Инсталация
-
-
Montaż urządzeń
- Монтаж на шкафове
- Проектиране и монтаж на шкафове
- Монтаж на енергийни системи
- Компоненти
- Машини, създадени по поръчка
- Научноизследователска и развойна дейност
-
Промишленни тестери
- Силови полупроводникови тестери
- Тестери за електрически апарати
- Тестери за варистори и отводители
- Автомобилен тестер за предпазители
- Qrr тестер за измерване на преходен заряд в тиристори и силови диоди
- Роторен тестер на прекъсвачи от серия FD
- Тестер за проверка на устройства за остатъчен ток
- Тестер за калибриране на реле
- Тестер за визуални тестове на бутални пръти на газови пружини
- Тиристорен превключвател с висок ток
- Тестер за разрушаване на мрежи
- Go to the subcategory
- View all categories
-
-
-
Индуктори
-
-
Modernizacja induktorów
- Ремонт на използвани индуктори
- Модернизация на индуктори
-
Производство на нови индуктори
- Втвърдяване на коляновите валове
- Втвърдяване на зъбите на лентовия трион
- Нагряване на елементи преди залепване
- Втвърдяване на пистите на автомобилните лагери на главината на колелата
- Втвърдяване на компонентите на трансмисията на задвижването
- Втвърдяване на стъпаловидни шахти
- Нагряване в контракционни фуги
- Сканиращо втвърдяване
- Меко запояване
- Нагреватели на заготовки
- Go to the subcategory
- Знание
- View all categories
-
-
-
Индукционни устройства
-
-
Urządzenia indukcyjne
-
Генератори за индукционно нагряване
-
Индукционни отоплителни генератори Ambrell
- Генератори: mощност 500 W, честота 150-400 kHz
- Генератори: mощност 1,2 - 2,4 kW, честота 150 - 400 kHz
- Генератори: mощност 4.2 - 10 kW, честота 150 - 400 kHz
- Генератори: mощност 10 - 15 kW, честота 50 - 150 kHz
- Генератори: mощност 30-45 kW, честота 50-150 kHz
- Генератори: mощност 65-135 kW, честота 50-150 kHz
- Генератори: mощност 180-270 kW, честота 50-150 kHz
- Генератори: mощност 20-35-50 kW, честота 15-45 kHz
- Генератори: mощност 75-150 kW, честота 15-45 kHz
- Генератори: mощност 200-500 kW, честота 15-45 kHz
- Генератори: mощност 20-50 kW, честота 5-15 kHz
- Go to the subcategory
- Индукционни отоплителни генератори Denki Kogyo
-
JKZ индукционни отоплителни генератори
- Генератори от серия CX, честота: 50-120kHz, мощност: 5-25kW
- SWS генератори, честота: 15-30kHz, мощност: 25-260kW
- Генератори (пещи) за формоване и коване на серия MFS, честота: 0,5-10kHz, мощност: 80-500kW
- MFS топилни пещи, честота: 0,5-10kHz, мощност: 70-200kW
- Генератори на UHT серия, честота: 200-400kHz, мощност: 10-160kW
- Go to the subcategory
- Генератори на лампи за индукционно отопление
- Индукционни отоплителни генератори Himmelwerk
- Go to the subcategory
-
Индукционни отоплителни генератори Ambrell
- Ремонти и модернизация
- Периферни устройства
-
Aпликации
- Медицински приложения
- Приложения за автомобилната индустрия
- Меко запояване
- Запояване
- Алуминиево запояване
- Припояване на магнитни инструменти от неръждаема стомана
- Прецизно запояване
- Атмосферно запояване
- Запояване на месингови и стоманени капачки за радиатори
- Запояване на синтеровани карбиди
- Запояване на медния накрайник и проводника
- Go to the subcategory
- Знание
- View all categories
-
Генератори за индукционно нагряване
-
-
-
Обслужване
-
-
asd
- Сервиз на промишлени охладители за вода и климатици
- Ремонт и модернизация на машини
- Поправка на устройства за автоматика, енергетика и промишлена автоматика
- Захранвания с високо напрежение за електрофилтри
- Индустриални принтери и етикетиращи машини
- Certyfikaty / uprawnienia
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
Questions on EMC
Questions on EMC
The demands have grown on EMC know-how in modern product development. ICs today are much more sensitive and the number of EMC standards and directives which have to be complied with has risen too.
This article deals with the possibilities open to an electronics' developer nowadays to optimise devices and circuits in terms of EMC. Due to much smaller circuit structures and lower supply voltages, the level of emission sources has dropped in the field of EMC emissions. This advantage, however, is cancelled out by higher signal frequencies as a result of increasing performance. Consequently, not much has really changed for emissions in general. Electric drives in vehicles are one exception here. Problems arising from RF currents which did not occur in applications without electric drives have greatly aggravated the situation.
There has been a general increase in EMC immunity problems. This is due to the ICs' lower supply voltages and shorter switching times.
The IC immunity levels drop with decreasing supply voltages. Due to their high speed, the ICs even identify short pulses as interferences.
Technological development in the field of electronics has brought about new EMC phenomena which require new specific EMC know-how. For example:
- ESD and ICs: modern, fast ICs respond to very short interference pulses in a specific way, thus leading to a completely new EMC behaviour in the devices under test.
- New technologies impose unprecedented technical demands: e.g. electric vehicles with respect to emissions
- New technical systems require high EMC standards for internal connections
Specialist know-how is an indispensable resource when it comes to breaking new technological ground. A consultant with expertise in corresponding special fields can provide just such know-how.
A consultant constantly has to come to terms with the latest, usually most complicated EMC problems. He can acquire the necessary know-how whilst solving these problems. The severest EMC cases from industry usually land on the consultant's desk. He needs to recall and apply his knowledge, but at the same time he is able to gain new experience. This work allows the consultant to recognise new EMC phenomena resulting from technical development as soon as they appear. This may even be years before these EMC phenomena are generally known in practice. Fast transients, for example, that occur during electro-static discharges can only affect fast ICs. New, as yet unidentified chains of actions are responsible for this phenomenon. The developer only sees the effect during an EMC test. The device under test reacts in an abnormal, inexplicable way (Figure 1).
Figure 1 The device fails the EMC test and there is no land in sight. EMC measures are most effective if a sound EMC concept is drawn up at the very beginning of a development project.
The fast transients that occur during electro-static discharges last for approx. 200 ps. Only fast ICs can recognise them and can be affected by them. The duration of transient disturbances is so short that normal discharge systems are not able to short-circuit them. This means that the disturbance voltage is able to build up to its maximum and interfere with the electronics even though the specialist assumes that everything is perfectly short-circuited. The resulting fault patterns are abnormal and no longer allow an unambiguous interpretation
This effect is quite common today, but ten years ago it was rather rare. Once the problems that lead to this phenomenon are known, they can be controlled. The consultant learns fast while dealing with these and providing advice and is thus able to be of assistance in solving further problems expediently and efficiently.
The extent to which intervention in the development process is necessary depends on the respective EMC problem to be solved and may entail more or less work. The following global possibilities exist to suppress interference in devices:
1. change the component packaging
2. change the layout
3. replace the IC which is responsible for the weak point
4. improve the IC which is responsible for the weak point
5. change the housing and/or mechanical design
Figure 2 IC test bench for immunity to pulsed interference. This measurement set-up allows the developer or IC manufacturer to determine the immunity level of each individual pin. Corresponding protective measures can then be taken into account in the IC layout. IC optimisation is worthwhile for the manufacturer if larger quantities are involved.
To 1) Changing the component packaging is the easiest solution. It is what customers hope for, but this is generally to no avail since the problem usually sits deeper.
To 2) Layout changes mean that the printed circuit board has to be redeveloped. The movement of test points may affect the test adapters.
To 3) Replacing an IC with a QFP housing by an IC with a BGA housing may be successful but assumes that an IC with a BGA housing which provides the same functions is available.
To 4) If the volume of the entire project is large enough, it is also possible to improve the IC together with the IC manufacturer. This helps avoid a lot of additional design work in order to protect the IC from outside.
To 5) Design changes relating to the entire product require a lot of work. The simplest case would be a shielding part which can be added. Other cases may require the redesign of metal and plastic parts.
In general there are two different types of consultancy:
a) Consultancy in a crisis
A product launch is hindered by persisting EMC problems (Figure 3). Things begin to get desparate. The consultant is asked for help.
Figure 3 If a device fails the ESD test, this may considerably delay the launch of a product. EMC hardening of the device often entails high, unbudgeted costs.
b) Consultancy during the development process
Consultancy during development usually arises out of the customer's experience. The idea springs from previous crisis consultancy when new projects are pending which involve EMC demands never experienced before. These may be new developments with a 10 to 100-fold higher performance factor that require the use of innovative technical principles for the first time. Such developments can break new ground and may even be new for the consultant too. One obvious approach would be to build and use prototypes to test all necessary measures. But experience teaches us that complex systems cannot be controlled in this way. There will be several weak points which usually overlap impenetrably in the prototype. A solution will be found in the end, but it will not be satisfactory. A lot of time and money will finally lead to a lame compromise.
Splitting the total system into individual parts, however, has proved its worth. Based on the cause and effect relationship, the device has to be broken down into elements. This will be demonstrated here taking a high-speed bus system as an example. The bus system has to work correctly in all circumstances, even if an electro-static discharge causes a bit error. The signal path of the high-speed bus system has to be divided into individual components such as: transmitting – receiving IC, printed circuit-board segments, connectors and cables. All of the components are tested separately for their suitability and improved as necessary. Corresponding EMC objectives have to be defined for this purpose. Last but not least, the optimised components are assembled in an initial sample. This will be immune to interference if the consultants and their customers have worked together properly.
The high-speed connector component will also be examined here. Setting up a test system in the form of a high-speed section (prototype of the high-speed system) would not be flexible enough. It is much better to know the connector's physical parameter that represents its function in interaction with the ESD disturbance path, namely the coupling inductance. This parameter describes the relationship between the ESD disturbance current flowing on the plug pin's outer sheath and the voltage induced on the inner signal lines. The coupling inductance is a frequency-independent constant which only depends on the connector's design. This means that each connector has its own individual value. When the maximum ESD disturbance pulse flows across the plug connector from outside, the voltage in the signal lines may not exceed the high-speed IC's immunity level. If the induced voltage is greater, the ESD disturbance will interfere with the high-speed system. The following worst case scenario can be designed for practical purposes: the connector should be able to carry the total 6 kV ESD disturbance current of IESD = 22.5 A (current according to EN 61000-4-2). The high-speed receiver has an immunity level US of approximately 100 mV.
The required coupling inductance can be calculated from
L = 3 pH.
3 pH is a very small value for a plug connector. Plug connectors usually have coupling inductances between 30 pH and 1,000 pH. There is hardly any connector that can solve this problem. The situation can be remedied with an additional shielding plate over the connector. Such solutions cost time and money.
The connector manufacturer is not usually aware of how important the coupling inductance is. That's why connectors which may possibly fit the purpose have to be bought and measured to find a suitable one. If the project is large enough, a bespoke connector may have to be developed especially for this application. This would be the most elegant approach. Of course, the plug connector manufacturer can develop a connector relatively quickly according to the coupling inductance requirements. A coupling inductance measurement set-up (Figure 4) and a simulation tool will help him.
Figure 4 The coupling inductance measuring set-up provides good access to the device under test (plug connector) during the measurement. It can be easily adjusted until it shows an optimal EMC behaviour (inductance value).
If, for example, a metal part is bent or moved slightly at the coupling inductance measurement set-up, the effect on the inductance can be seen immediately at the measuring device. This procedure allows a quick optimisation of the connector. The target value for the connector should be a coupling inductance of approximately 1 to 2 pH, which is an inconceivably small value for a plug connector. Once the target has been achieved and the finished connector is inserted into the initial sample, the connector system will pass the ESD test.
All EMC-relevant components which are located on the disturbance path of the high-speed system have to be treated in the same way.
The initial sample will fail if this approach is not taken and a conventional connector whose coupling inductance is not even known is used instead. In this case the decision about the design will have been taken and in most cases the production tools will already have been built. It will be difficult or even impossible to find a second suitable and compatible connector. At this point, there are two possibilities: to design an additional shielding part over the connector or to redesign the entire device.
It is a consultant's task to make sure that the right approach is taken from the very outset together with the electronics' developer. The examples also clearly show the benefits of consultancy during the development phase compared to crisis consultancy.
Leave a comment