Трябва да сте влезли в
-
moreX
-
Компоненти
-
-
Category
-
Полупроводници
- Диоди
- Тиристори
- Електроизолирани модули
- Изправителни мостове
-
Транзистори
- Транзистори | GeneSiC
- Модули SiC MOSFET | Mitsubishi
- Модули SiC MOSFET | STARPOWER
- ABB SiC MOSFET модули
- IGBT модули | MITSUBISHI
- Транзисторни модули | MITSUBISHI
- MOSFET модули | MITSUBISHI
- Транзисторни модули | ABB
- IGBT модули | POWEREX
- IGBT модули | INFINEON (EUPEC)
- Полупроводникови елементи от силициев карбид
- Go to the subcategory
- Драйвeри
- Силови блокове
- Go to the subcategory
-
Електрически преoбразователи
-
Токови преoбразователи LEM
- Токов преобразовател със затворена верига на обратна връзка (C/L)
- Токов преобразовател с отворена верига на обратна връзка (O/L)
- Токов преобразовател захранван с еднополюсно напрежение
- Преобразователи в технология Eta
- Високоточни токови преобразуватели LF xx10 серия
- Преобразуватели на ток от серия LH
- HOYS и HOYL - предназначени за директно монтиране върху проводникова шина
- Настоящи преобразуватели в SMD технологията от сериите GO-SME и GO-SMS
- АВТОМОБИЛНИ токови преобразуватели
- Go to the subcategory
-
Преобразуватели на напрежение | LEM
- Напреженови преобразователи серия LV
- Напреженови преобразователи серия DVL
- Прецизни напреженови преобразователи с двойна магнитна сърцевина серия CV
- Тягов напреженов преобразовател DV 4200/SP4
- Преобразуватели на напрежение от серията DVM
- Преобразувател на напрежение - DVC 1000-P
- Преобразуватели на напрежение - серия DVC 1000
- Go to the subcategory
- Прецизни токови преобразуватели | LEM
- Go to the subcategory
-
Токови преoбразователи LEM
-
Пасивни компоненти (кондензатори, резистори, предпазители, филтри)
- Резистори
-
Предпазители
- Миниатюрни предпазители за електронни системи серия ABC и AGC
- Бързи тръбни предпазители
- Закъснителни вложки с характеристика GL/GG и AM
- Ултрабързи стопяеми вложки
- Бързи предпазители британски и американски стандарт
- Бързи предпазители европейски стандарт
- Тягови предпазители
- Високоволтни предпазителни вложки
- Go to the subcategory
-
Кондензатори
- Кондензатори за двигатели
- Електролитни кондензатори
- Кондензатори тип snubbers
- Кондензатори за мощност
- Кондензатори за DC (постояннотокови вериги)
- Кондензатори за компенсиране на мощност
- Високоволтови кондензатори
- Кондензатори за индукционно нагряване
- Кондензатори за съхранение на импулси и енергия
- DC LINK кондензатори
- Кондензатори за AC/DC вериги
- Go to the subcategory
- Филтри EMI (против смущения)
- Суперкондензатори
-
Защита от пренапрежение
- Защита от пренапрежение за коаксиални приложения
- Защита от пренапрежение за системи за видеонаблюдение
- Защита от пренапрежение за захранващи кабели
- Ограничители за пренапрежение за LED
- Ограничители за пренапрежение за фотоволтаици
- Защита на системата за претегляне
- Защита от пренапрежение за Fieldbus
- Go to the subcategory
- Go to the subcategory
-
Релета и контактори
- Теория- релета и контактори
- Полупроводникови релета АС 3-фазни
- Релета полупроводникови DC
- Регулатори, управляващи системи и аксесоари
- Системи за мек старт и реверсивни контактори
- Електромеханични релета
- Контактори
- Ротационни превключватели
-
Полупроводникови релета АС 1-фазни
- Полупроводникови релета AC еднофазни серия 1 | D2425 | D2450
- Полупроводникови релета AC еднофазни серия CWA I CWD
- Полупроводникови релета AC еднофазни серия CMRA I CMRD
- Полупроводникови релета АС ендофазни серия PS
- Полупроводникови релета AC двойни и четворни серия D24 D, TD24 Q, H12D48 D
- 1-фазни полупроводникови релета серия gn
- Полупроводникови релета АС серия ckr
- Релета AC еднофазни на шина DIN серия ERDA и ERAA
- Еднофазни AC релета за ток 150А
- Двойни полупроводникови релета, интегрирани с радиатор за DIN шина
- Go to the subcategory
- Полупроводникови релета АС 1-фазни, за печатни платки
- Интрфейс релета
- Go to the subcategory
- Индукционни елементи
- Радиатори, Bаристори, Tермични защити
- Вентилатори
- Климатизация, Оборудване за електрически шкафове, Охладители
-
Батерии, зарядни устройства, буферни захранвания и инвертори
- Батерии, зарядни устройства - теоретично описание
- Литиево-йонни батерии. Персонализирани батерии. Система за управление на батерията (BMS)
- Батерии
- Зарядни устройства и аксесоари за батерии
- UPS резервно захранване и буферни захранвания
- Преобразуватели и аксесоари за фотоволтаици
- Енергиен запас
- Горивни клетки
- Литиево-йонни батерии
- Go to the subcategory
-
Автоматика
- Futaba Drone Parts
- Крайни изключватели, Микроизключватели
- Датчици, Преобразователи
- Пирометри
- Броячи, Времеви релета, Панелни измервателни прибори
- Промишленни защитни устройства
- Светлинна и звукова сигнализация
- Термокамера
- Екрани LED
- Управляваща апаратура
-
Регистратори
- Регистратор на температура със запис на лента и цифров показател - AL3000
- Микропроцесорни регистратори с екран LCD серия KR2000
- Регистратор KR5000
- Измервател със функция за регистриране на влажност и температура HN-CH
- Експлоатационни материали за регистратори
- Компактен графичен регистратор 71VR1
- Регистратор KR 3000
- Регистратор РС серия R1M
- Регистратори РС серия R2M
- Регистратор РС - 12 изолирани входа– RZMS
- Регистратор PC, USB, 12 изолирани входа – RZUS
- Go to the subcategory
- Go to the subcategory
-
Проводници, Кабел литцендрат, Кабелни канали, Меки връзки
- Проводници
- Кабел литцендрат
-
Кабели за специални приложения
- Компенсиращи и удължаващи проводници
- Проводници за термодвойки
- Съединителни проводници за РТ датчици
- Многожилни проводници темп. -60C до +1400C
- SILICOUL проводници средно напрежение
- Запалителни проводници
- Нагревателни проводници
- Едножилни проводници темп. -60C до +450C
- Проводници за ЖП приложения
- Нагревателни проводници в Ех изпълнение
- Go to the subcategory
- Кабелни канали
-
Плетени кабели
- Плоски плетени кабели
- Кръгли плетени кабели
- Много гъвкави плетени кабели - плоски
- Много гъвкави плетени кабели - кръгли
- Медни цилиндрични плетени кабели
- Медни цилиндрични плетени кабели и канали/кожуси
- Гъвкави заземяващи ленти
- Плетени проводници от оцинкована и неръждясваща стомана
- Медни изолирани плетени проводници PCV -температура до 85 градуsа по C
- Плоски плетени алуминиеви проводници
- Комплект за подсъединение - плетени проводници и тръбички
- Go to the subcategory
- Оборудване за тяга
- Кабелни накрайници
- Изолирани еластични шини
- Многослойни еластични шини
- Системи за провеждане на кабели (шлауфи)
- Кабелни канали / маркучи
- Go to the subcategory
- View all categories
-
Полупроводници
-
-
- Suppliers
-
Applications
- AC и DC задвижвания (инвертори)
- CNC машинни инструменти
- Energy bank
- HVAC автоматизация
- Двигатели и трансформатори
- Заваръчни машини и заваръчни машини
- Захранващи (UPS) и токоизправителни системи
- Измерване и регулиране на температурата
- Измерване и регулиране на температурата
- Индукционно отопление
- Индустриална автоматизация
- Индустриална автоматизация
- Индустриални защитни устройства
- Компоненти за потенциално експлозивна атмосфера (EX)
- Машини за сушене и обработка на дървесина
- Машини за термоформоване на пластмаси
- Минно дело, металургия и основаване
- Оборудване за разпределителни, контролни и телекомуникационни шкафове
- Печат
- Трамвайна и железопътна тяга
-
Инсталация
-
-
Montaż urządzeń
- Монтаж на шкафове
- Проектиране и монтаж на шкафове
- Монтаж на енергийни системи
- Компоненти
- Машини, създадени по поръчка
- Научноизследователска и развойна дейност
-
Промишленни тестери
- Силови полупроводникови тестери
- Тестери за електрически апарати
- Тестери за варистори и отводители
- Автомобилен тестер за предпазители
- Qrr тестер за измерване на преходен заряд в тиристори и силови диоди
- Роторен тестер на прекъсвачи от серия FD
- Тестер за проверка на устройства за остатъчен ток
- Тестер за калибриране на реле
- Тестер за визуални тестове на бутални пръти на газови пружини
- Тиристорен превключвател с висок ток
- Тестер за разрушаване на мрежи
- Go to the subcategory
- View all categories
-
-
-
Индуктори
-
-
Modernizacja induktorów
- Ремонт на използвани индуктори
- Модернизация на индуктори
-
Производство на нови индуктори
- Втвърдяване на коляновите валове
- Втвърдяване на зъбите на лентовия трион
- Нагряване на елементи преди залепване
- Втвърдяване на пистите на автомобилните лагери на главината на колелата
- Втвърдяване на компонентите на трансмисията на задвижването
- Втвърдяване на стъпаловидни шахти
- Нагряване в контракционни фуги
- Сканиращо втвърдяване
- Меко запояване
- Нагреватели на заготовки
- Go to the subcategory
- Знание
- View all categories
-
-
-
Индукционни устройства
-
-
Urządzenia indukcyjne
-
Генератори за индукционно нагряване
-
Индукционни отоплителни генератори Ambrell
- Генератори: mощност 500 W, честота 150-400 kHz
- Генератори: mощност 1,2 - 2,4 kW, честота 150 - 400 kHz
- Генератори: mощност 4.2 - 10 kW, честота 150 - 400 kHz
- Генератори: mощност 10 - 15 kW, честота 50 - 150 kHz
- Генератори: mощност 30-45 kW, честота 50-150 kHz
- Генератори: mощност 65-135 kW, честота 50-150 kHz
- Генератори: mощност 180-270 kW, честота 50-150 kHz
- Генератори: mощност 20-35-50 kW, честота 15-45 kHz
- Генератори: mощност 75-150 kW, честота 15-45 kHz
- Генератори: mощност 200-500 kW, честота 15-45 kHz
- Генератори: mощност 20-50 kW, честота 5-15 kHz
- Go to the subcategory
- Индукционни отоплителни генератори Denki Kogyo
-
JKZ индукционни отоплителни генератори
- Генератори от серия CX, честота: 50-120kHz, мощност: 5-25kW
- SWS генератори, честота: 15-30kHz, мощност: 25-260kW
- Генератори (пещи) за формоване и коване на серия MFS, честота: 0,5-10kHz, мощност: 80-500kW
- MFS топилни пещи, честота: 0,5-10kHz, мощност: 70-200kW
- Генератори на UHT серия, честота: 200-400kHz, мощност: 10-160kW
- Go to the subcategory
- Генератори на лампи за индукционно отопление
- Индукционни отоплителни генератори Himmelwerk
- Go to the subcategory
-
Индукционни отоплителни генератори Ambrell
- Ремонти и модернизация
- Периферни устройства
-
Aпликации
- Медицински приложения
- Приложения за автомобилната индустрия
- Меко запояване
- Запояване
- Алуминиево запояване
- Припояване на магнитни инструменти от неръждаема стомана
- Прецизно запояване
- Атмосферно запояване
- Запояване на месингови и стоманени капачки за радиатори
- Запояване на синтеровани карбиди
- Запояване на медния накрайник и проводника
- Go to the subcategory
- Знание
- View all categories
-
Генератори за индукционно нагряване
-
-
-
Обслужване
-
-
asd
- Сервиз на промишлени охладители за вода и климатици
- Ремонт и модернизация на машини
- Поправка на устройства за автоматика, енергетика и промишлена автоматика
- Захранвания с високо напрежение за електрофилтри
- Индустриални принтери и етикетиращи машини
- Certyfikaty / uprawnienia
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
7th Generation NX type (NX7) Converter Inverter Brake (CIB) Modules
7th Generation NX type (NX7) Converter Inverter Brake (CIB) Modules
Developed to address the requirements of high performance drives by utilizing an innovative packaging concept and an advanced chip technology.
Applications such as elevator drives or servomotors have several special requirements. One on hand, high efficiency is important, while on the other hand, the inverter unit be resilient to the different types of load cycling. Furthermore, the inverter must be designed as compact as possible. NX7 CIB modules aim to address these challenges.
By Toshinari Hirai and Narender Lakshmanan, Mitsubishi Electric Europe B.V
Advanced Chip Technology Combined with a New Packaging Concept:
Each CIB module consists of an integrated 3 phase inverter part, a converter (3 ph diode rectifier) part and a brake chopper part. The line-up of the latest NX7 CIB modules is shown in Figure 1. The NX7 CIB modules utilize the latest 7th generation CSTBT™ IGBT along with the RFC (Relaxed Field of Cathode) diodes. The electrical characteristics of the new thin wafer 7th generation chips have been tuned for the reduction of overall power losses.
Figure 1: Line-up of the NX7 CIB Modules. NOTE: Pressfit and PCTIM options available.
Figure 2: Cross section of the NX7 package versus a conventional module package.
The NX7 CIB employs a new packaging concept – the SLC (SoLid Cover) Technology which includes an insulated metal baseplate structure (refer to Figure 2). The conventional baseplate has been replaced by an insulated metal baseplate structure where the metal baseplate contains an organic insulation layer directly bonded to it. Therefore the conventional substrate solder between metal baseplate and isolation ceramic has been eliminated. The soft silicone gel of the conventional structure is replaced by the hard DP-resin (direct potting resin) [1].
Minimizing Losses and Maximizing Performance:
Operating the inverter at elevated switching frequencies helps in reducing the audible noise, hence low loss operation even at high switching frequencies is an important capability for applications such as elevators. In addition, limiting the IGBT chip temperature rise during low rotation speed (low output frequency) operation is a key requirement.
Figure 3 indicates the overall power loss comparison of an NX7 CIB module (CM50MXUA-24T) with a previous 6th gen. IGBT module (CM50MXA-24S) considering different switching frequencies and a low output current frequency of fout=5Hz. The benefit in terms of pow-
Figure 3: Power loss and junction temperature performance of the NX7 CIB vs conventional module. Conditions: VCC = 600V, Io = 24 Arms, PF = 0.9, M = 1, fout = 5 Hz, Data @ Tj = 125°C.W
er loss between a conventional module and an NX7 CIB module increases with increase in switching frequency. This can be attributed to the optimization in the trade-off between the switching losses and the ON state losses in the new 7th generation chip technology. A combination of loss reduction and the low thermal resistance (chip to case) offered by the 7th generation chip technology ensures that the maximum junction temperature can be reduced by utilizing the NX7 CIB module. The analysis indicated in Figure 3 has been carried out considering a target switching dv⁄dt (max)= 10 kV/μs.
Designed for High Reliability:
Intermittent operation is a characteristic feature of applications such as elevators. The impact of load cycling can be categorized into two types of cycling phenomena: power cycling and thermal cycling. Power cycling refers to a cycling of the junction temperature which affects the reliability of the chip-tobond wire contact whereas thermal cycling refers to the cycling of baseplate temperature which conventionally affect the solder layer connecting the isolation substrate and the baseplate. But due to the elimination of the ceramic substrate and the solder layer, the limitation pertaining to thermal cycling is not present in NX7 CIB modules.
Case 1: Extended Loading Conditions (temperature swing at the heatsink and case):
It is common for applications such as elevators to experience operation cycles where the heatsink temperature rises to an allowable point and then falls back to the ambient temperature. Session involving continuous operation which would generate a temperature swing at the heatsink, would also involve temperature swings at the case of the power module and at the chip surface (junction). An example of such operation is represented in Figure 4. For this analysis, the Mitsubishi Electric 6th generation modules represent the conventional modules.
The following points are the key conclusions from Figure 4:
- Bottleneck identification: For conventional modules which utilize a baseplate solder layer, thermal cycling performance is the lifetime limitation factor for long operation cycles due to the degradation of the solder layer under such conditions.
- Solution: The bottleneck (solder layer) has been eliminated in the new NX7 module due to the adoption of the IMB structure.
Case 2: Short term loading conditions (temperature swing predominantly at the chip):
Operating cycles (in the range of a few seconds) which generate temperature swings only at IGBT chip (ΔTj) affect the reliability of the chip to bond wire contact. The amplitude of the ΔTj is the deciding factor with regards to the power cycling lifetime. This point has been addressed by employing the low loss 7th generation chip technology
Figure 4: Lifetime estimation for extended duration loading (Conventional module vs NX7 CIB).
Figure 5: Compactness by heatsink reduction. Conditions: Vcc = 600V, fc = 12 kHz, fout = 5 Hz, M = 1, PF = 0.9, Ic = 24 Arms, Ta = 30 °C, data @ Tj = 125 °C
Figure 6: Optimization of terminal temperature in the NX7 CIB module.
in combination with the optimized chip to case thermal resistance in the NX7 module. This combination ensures that for the same operating condition, the corresponding ΔTj is lower (compared the performance of the conventional module). This tendency can be understood from the following results indicating power cycling capability based on the conditions mentioned in Figure 3 (for fc = 12 kHz):
- Conventional CIB (CM50MXA-24S): ΔTj = 54.52 K: 600 thousand cycles (approx.)
- NX7 CIB (CM50MXUA-24T): ΔTj = 36.64 K:WWWW 6 million cycles (approx.)
Summary – Overall lifetime enhancement
Overall improvement in lifetime has been ensured by the following two-step strategy:
- Elimination of the thermal cycling bottleneck
- Reduction of ΔTj to achieve better power cycling capability
Compact Design:
To achieve a compact design, several important considerations have to be made. The following points illustrate the advantage offered by adopting an NX7 CIB module.
1. Since the NX7 CIB module exhibits an improved loss performance and superior thermal performance (refer Figure 4), the designer can shrink the size of the heatsink in order to achieve an overall compact design. The example presented in Figure 5 illustrates a 35% reduction of the heatsink without causing an increase in the maximum junction temperature.
2. To achieve compactness, the classical copper busbar structure can be replaced by a PCB which would be connected to the terminals of the power module via pressfit or soldering. The challenge with this approach is that, due to high current density at the terminal pins, the temperature developed at the terminal could impose a limitation on the maximum operating current. This possibility has been taken into consideration while developing the NX7 CIB and accordingly the pin structure has been designed to reduce the temperature developed at the terminal during operation. As indicated in Figure 6, the temperature rise developed at the terminals of the Mitsubishi module (NX7 CIB) is lower in comparison with a competitor’s design. The improved thermal conductivity of the potting material (DP-resin) versus gel is an added advantage.
Scalable solutions:
The NX7 CIB line-up allows the designer to develop platform solutions – one mechanical design for multiple power ratings. For example, (refer Figure 1), in the 1200V category, the 45mm x 107.5mm module is available in 3 different current ratings (35A, 50A and 75A and the 62mm x 122mm module is available in 3 different current ratings (75A, 100A, 150A). This allows the designer to develop one mechanical design for 3 different power levels.
Conclusion:
The requirements of applications such as elevator drives have been taken into consideration while developing the NX7 CIB module. The unique combination of the SLC technology packing and the 7th generation chip technology allows the designer to develop an efficient, reliable and a compact inverter that can be used as a platform solution for multiple power levels.
References:
[1] Thomas Radke, et al: Enhanced IGBT Module Power Density Utilizing the Improved Thermal Conductivity of SLCTechnology, Bodo’s Power systems, June 2016
[2] Thomas Radke, et al : New Horizons in Thermal Cycling Capability Realized with the 7th gen. IGBT module Based on SLC-Technology, Bodo’s Power systems, May 2017
[3] MELCOSIM: IGBT thermal and loss simulation software, available at www. mitsubishielectric.com/semiconductors/ simulator/
Leave a comment