Musíte být přihlášen
-
moreX
-
Komponenty
-
-
Category
-
Polovodiče
- LED diody
- Tyristory
- Elektroizolační moduly
- Přemosťovací usměrňovače
-
Tranzistory
- Tranzistory | GeneSiC
- SiC MOSFET moduly | Mitsubishi
- SiC MOSFET moduly | STARPOWER
- Moduly ABB SiC MOSFET
- Moduly IGBT | MITSUBISHI
- Tranzistorové moduly | MITSUBISHI
- Moduly MOSFET | MITSUBISHI
- Tranzistorové moduly | ABB
- Moduly IGBT | POWEREX
- Moduly IGBT | INFINEON (EUPEC)
- Polovodičové prvky z karbidu křemíku (SiC)
- Go to the subcategory
- Ovladače brány
- Bloky napájení
- Go to the subcategory
-
Měniče proudu a napětí LEM
-
Měniče proudu | LEM
- Proudový převodník s uzavřenou zpětnou vazbou (C / L)
- Měnič proudu s otevřenou zpětnou vazbou (O / L)
- Měnič proudu napájený unipolárním napětím
- Převodníky v technologii Eta
- Vysoce přesné měniče proudu řady LF xx10
- Měniče proudu řady LH
- HOYS a HOYL - určené pro přímou montáž na vodičovou lištu
- Měniče proudu v technologii SMD řady GO-SME a GO-SMS
- AUTOMOTIVE převodníky proudu
- Go to the subcategory
- Převodníky napětí | LEM
- Precision Current Transducers | LEM
- Go to the subcategory
-
Měniče proudu | LEM
-
Pasivní součásti (kondenzátory, rezistory, pojistky, filtry)
- Rezistory
-
Pojistky
- Miniaturní pojistky pro elektronické obvody řady ABC a AGC
- Trubkové rychle působící pojistky
- Pojistkové vložky s časovým zpožděním s charakteristikami GL / GG a AM
- Ultrarychlé pojistkové články
- Rychle působící pojistky (britský a americký standard)
- Rychle působící pojistky (evropský standard)
- Pojistky pojezdu
- Pojistkové vložky vysokého napětí
- Go to the subcategory
-
Kondenzátory
- Motorové kondenzátory
- Elektrolytické kondenzátory
- Filmové kondenzátory
- Výkonové kondenzátory
- Kondenzátory pro stejnosměrné obvody
- Kondenzátory korekce účiníku
- Vysokonapěťové kondenzátory
- Indukční topné kondenzátory
- Kondenzátory pulsu a energie
- DC LINK kondenzátory
- Kondenzátory pro AC / DC obvody
- Go to the subcategory
- EMI filtry
- Superkondenzátory
- Přepěťová ochrana
- Go to the subcategory
-
Relé a stykače
- Teorie relé a stykačů
- 3fázová střídavá polovodičová relé
- 3fázová střídavá polovodičová relé
- Regulátory, ovládací prvky a příslušenství
- Měkké spouštění a reverzační stykače
- Elektromechanická relé
- Stykače
- Otočné spínače
-
Jednofázová střídavá polovodičová relé
- Jednofázová střídavá polovodičová relé, 1 řada | D2425 | D2450
- Jednofázová střídavá polovodičová relé řady CWA a CWD
- Jednofázová střídavá polovodičová relé řady CMRA a CMRD
- Jednofázová střídavá polovodičová relé řady PS
- Dvojitá a čtyřnásobná střídavá polovodičová relé řady D24 D, TD24 Q, H12D48 D.
- Jednofázová polovodičová relé řady GN
- Jednofázová střídavá polovodičová relé řady CKR
- Jednofázová AC relé na lištu DIN řady ERDA A ERAA
- Jednofázová AC relé pro proud 150 A.
- Dvojitá polovodičová relé integrovaná s chladičem pro lištu DIN
- Go to the subcategory
- Jednofázová AC polovodičová relé pro PCB
- Relé rozhraní
- Go to the subcategory
- Jádra a další indukční součásti
- Radiátory, varistory, tepelné ochrany
- Fanoušci
- Klimatizace, příslušenství pro elektrické skříně, chladiče
-
Baterie, nabíječky, vyrovnávací zdroje a střídače
- Baterie, nabíječky - teoretický popis
- Lithium-iontové baterie. Vlastní baterie. Systém správy baterií (BMS)
- Baterie
- Nabíječky baterií a příslušenství
- Záložní zdroj UPS a vyrovnávací napájecí zdroje
- Převaděče a příslušenství pro fotovoltaiku
- Úschovna energie
- Palivové články
- Lithium-iontové baterie
- Go to the subcategory
-
Automatika
- Futaba Drone Parts
- Koncové spínače, mikrospínače
- Senzory, převodníky
- Pyrometrie
- Počítadla, časovače, panelové měřiče
- Průmyslová ochranná zařízení
- Světelná a zvuková signalizace
- Termovizní kamera
- LED displeje
- Tlačítka a spínače
-
Zapisovače
- Zapisovač AL3000
- Rekordér KR2000
- Rekordér KR5000
- Měřič HN-CH s funkcí registrace vlhkosti a teploty
- Spotřební materiál pro zapisovače
- Rekordér 71VR1
- Zapisovač KR 3000
- Počítačové rekordéry řady R1M
- Počítačové rekordéry řady R2M
- PC rekordér, 12 izolovaných vstupů - RZMS-U9
- PC rekordér, USB, 12 izolovaných vstupů - RZUS
- Go to the subcategory
- Go to the subcategory
-
Kabely, dráty, vodiče, flexibilní připojení
- dráty
- lanka
- Kabely pro speciální aplikace
- košile
-
prýmky
- prýmky byt
- prýmky kolo
- Velmi flexibilní opletení - plochý
- Velmi flexibilní opletení - Round
- Měď opletené válcové
- Mědí štít a válcové
- Flexibilní zemnící pásky
- Opletení válcovité pozinkované a nerezové oceli
- PVC izolované měděné pletivo - teplota 85 ° C
- Ploché pletené hliníkové
- Connection Kit - prýmky a trubky
- Go to the subcategory
- Příslušenství pro trakční
- kabelové botky
- Ohebné izolované přípojnice
- Vícevrstvá ohebná lišta
- Systémy vedení kabelů
- Potrubí, trubky
- Go to the subcategory
- View all categories
-
Polovodiče
-
-
- Suppliers
-
Applications
- AC a DC pohony (střídače)
- Automatizace HVAC
- CNC obráběcí stroje
- Energy bank
- Indukční ohřev
- Komponenty pro prostředí s nebezpečím výbuchu (EX)
- Měření a regulace teploty
- Měření a regulace teploty
- Motory a transformátory
- Napájecí zdroje (UPS) a usměrňovací systémy
- Průmyslová automatizace
- Průmyslová automatizace
- Průmyslová ochranná zařízení
- Stroje na sušení a zpracování dřeva
- Stroje na tvarování plastů za tepla
- Svařovací stroje a svářecí stroje
- Těžba, hutnictví a slévárenství
- Tisk
- Tramvajová a železniční trakce
- Zařízení pro distribuční, řídicí a telekomunikační skříně
-
Instalace
-
-
Montaż urządzeń
- Instalace skříní
- Návrh a montáž skříní
- Instalace energetických systémů
- Komponenty
- Stroje stavěné na zakázku
- Výzkumná a vývojová práce
-
Průmyslové testery
- Výkonové polovodičové zkoušečky
- Zkoušečky elektrických přístrojů
- Testery varistorů a omezovačů přepětí
- Tester automobilových pojistek
- Qrr tester pro měření přechodného náboje v tyristorech a výkonových diodách
- Zkoušečka rotorů jističů řady FD
- Auditor testeru zařízení na zbytkový proud
- Zkoušečka kalibrace relé
- Tester vizuálních zkoušek pístních tyčí plynových pružin
- Silnoproudý tyristorový spínač
- Tester na lámání pletiva
- Go to the subcategory
- View all categories
-
-
-
Induktory
-
-
Modernizacja induktorów
-
-
-
Indukční zařízení
-
-
Urządzenia indukcyjne
-
Indukční topné generátory
-
Indukční generátory Ambrell
- Generátory: výkon 500 W, frekvence 150-400 kHz
- Generátory: Výkon 1,2 - 2,4 kW, frekvence 150 - 400 kHz
- Generátory: výkon 4,2 - 10 kW, frekvence 150 - 400 kHz
- Generátory: výkon 10 - 15 kW, frekvence 50 - 150 kHz
- Generátory: výkon 30-45 kW, frekvence 50-150 kHz
- Generátory: výkon 65-135 kW, frekvence 50-150 kHz
- Generátory: výkon 180-270 kW, frekvence 50-150 kHz
- Generátory: výkon 20-50 kW, frekvence 15-45 kHz
- Generátory: výkon 75-150 kW, frekvence 15-45 kHz
- Generátory: výkon 200-500 kW, frekvence 15-45 kHz
- Generátory: výkon 20-50 kW, frekvence 5-15 kHz
- Go to the subcategory
- Indukční topné generátory Denki Kogyo
-
Indukční topné generátory JKZ
- Generátory řady CX, frekvence: 50-120kHz, výkon: 5-25kW
- Generátory řady SWS, frekvence: 15-30kHz, výkon: 25-260kW
- Generátory (pece) pro tváření a kování řady MFS, frekvence: 0,5-10kHz, výkon: 80-500kW
- Tavicí pece MFS, frekvence: 0,5-10kHz, výkon: 70-200kW
- Generátory řady UHT, frekvence: 200-400kHz, výkon: 10-160kW
- Go to the subcategory
- Generátory světel pro indukční ohřev
- Indukční topné generátory Himmelwerk
- Go to the subcategory
-
Indukční generátory Ambrell
- Opravy a modernizace
- Periferní zařízení
- Aplikace
- Znalostní základna
- View all categories
-
Indukční topné generátory
-
-
-
Servis
-
-
asd
- Servis průmyslových chladičů vody a klimatizací
- Opravy a modernizace strojů
- Opravy výkonové elektroniky, elektroniky a automatizačních zařízení
- Vysokonapěťové napájecí zdroje pro elektrostatické odlučovače
- Průmyslové tiskárny a štítkovače
- Certificates / Entitlements
- View all categories
-
-
- Kontakt
- Zobacz wszystkie kategorie
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8
Designing devices with Electromagnetic Compatibility (EMC) in mind is a crucial aspect that allows minimizing electromagnetic interference and ensuring reliable and standards-compliant operation of electronic devices.
Here are some essential points to consider when designing devices with EMC in mind:
Proper component placement: Thoughtful arrangement of components inside the device significantly influences electromagnetic emissions and susceptibility to interference. It is important to avoid placing elements with different electromagnetic characteristics close to each other and ensure adequate isolation between them. Proper component placement helps minimize cross-coupling of electromagnetic disturbances.
Application of shielding: Employing shielding in device design is essential for limiting emissions and minimizing susceptibility to electromagnetic interference. Shielding can involve the use of appropriate shielded enclosures, shielding of cables, printed circuit board layouts, or the application of protective layers in circuits. Adequate shielding helps protect sensitive signals from interference and reduces the impact of emissions on the environment.
Appropriate circuit layout and conduction: Designing devices with EMC in mind also includes proper circuit layout and conduction. Careful design of signal paths, the use of suitable EMC filters, ground separation, and the minimization of current loops contribute to reducing emissions and increasing resistance to interference. Additionally, appropriate conduction in circuits, such as using properly sized power and ground wires, helps minimize losses and unwanted electromagnetic effects.
Selection of appropriate components: The choice of suitable components significantly affects EMC performance. Components should comply well with EMC standards to minimize emissions and ensure high immunity to interference. Therefore, it is essential to select components from reputable manufacturers that meet the appropriate EMC standards.
Testing and verification: During the design of electronic devices with EMC in mind, conducting tests and verification at the design stage is crucial. Testing for electromagnetic emissions and susceptibility allows identifying issues and resolving them early. Verification for compliance with EMC standards and assessing device performance in controlled conditions ensures that the device will operate correctly and comply with EMC requirements.
Designing devices with Electromagnetic Compatibility (EMC) in mind is critical for minimizing electromagnetic interference, ensuring reliable operation, and complying with normative requirements. Proper component placement, shielding, appropriate circuit layout, selection of suitable components, testing, and verification are essential steps in achieving effective electromagnetic compatibility of devices.
Choosing appropriate components and materials is crucial for designing and manufacturing high-quality, reliable, and efficient electronic devices.
Properly chosen components and materials significantly impact the device's performance, durability, resistance to electromagnetic interference, and compliance with safety norms and regulations. Here are some important factors to consider when selecting components and materials:
Quality and reliability: Selecting components from reputable manufacturers known for high quality and reliability is crucial for ensuring device durability and reliability. Components should meet appropriate standards and come with the manufacturer's warranty and relevant certifications.
Compliance with EMC norms: Components should comply with Electromagnetic Compatibility (EMC) norms to minimize electromagnetic emissions and ensure high immunity to interference. It is essential to test components for emissions and susceptibility to interference and ensure they meet the required electromagnetic parameters.
Technical parameters: When choosing components, technical parameters such as voltage, current, frequency, operating temperature, lifetime, efficiency, and tolerances must be taken into account. Components should be appropriately matched to the project requirements and meet the specified parameters.
Resistance to environmental conditions: Depending on the device's application, components should be resistant to environmental conditions such as humidity, extreme temperatures, vibrations, or dust. Selecting components with appropriate environmental specifications helps ensure device reliability and durability under various operating conditions.
Use of eco-friendly materials: In the context of sustainable development, more attention is given to choosing eco-friendly materials. Opting for components and materials that are free from harmful substances and have minimal impact on the natural environment contributes to creating more sustainable electronic devices.
Availability and costs: When selecting components, their availability on the market and costs should be taken into account. Components should be available in suitable quantities and within required timelines to avoid delays in the production process. At the same time, considering component costs is essential for maintaining competitive pricing of devices.
Choosing appropriate components and materials is critical for the quality, reliability, and compliance of electronic devices. Properly chosen components that meet EMC standards, high quality, technical parameters, resistance to environmental conditions, eco-friendly materials, availability, and costs are significant factors to consider during the design and production of electronic devices.
Proper arrangement of cables and wires in electronic devices is essential for ensuring Electromagnetic Compatibility (EMC) and minimizing electromagnetic interference.
Incorrect cable arrangement can lead to interference emissions, affect signal quality, and increase device susceptibility to external interference. Here are some important factors to consider for proper cable and wire arrangement:
Separation of signals and power: Maintaining appropriate separation between signals and power cables is important. Separating signal cables from power cables helps avoid electromagnetic interference. Additionally, it is important to avoid running high-frequency signals in parallel with power cables, as it may induce interference.
Avoiding current loops: Current loops can affect electromagnetic emissions and susceptibility to interference. During cable arrangement, it is essential to avoid creating current loops that may lead to increased electromagnetic interference. Short and straight connections between elements should be prioritized to minimize cable length.
Shielding and grounding: For signal cables, the application of shielding can help reduce electromagnetic interference. Shielding cables protect signals from external interference. Proper grounding of shields and metal elements is also crucial for effectively draining electromagnetic interference.
Minimizing cable length: Excessively long cables can lead to increased emissions and susceptibility to electromagnetic interference. Therefore, minimizing cable length is crucial whenever possible. Shorter cables reduce the area where electromagnetic interference can be generated and spread.
Proper routing and securing of cables: Cables and wires should be appropriately routed and secured inside the device. Avoiding unnecessary twists, sharp bends, and tension in the cable helps maintain signal integrity and minimize the risk of damages and interference. Using appropriate insulations: Cables and wires should be adequately insulated to avoid distortions and interference. Proper insulation ensures protection against signal leakage, prevents shorts, and minimizes the risk of generating electromagnetic interference.
Proper arrangement of cables and wires is incredibly important for ensuring Electromagnetic Compatibility (EMC) in electronic devices. Separating signals from power, avoiding current loops, shielding and grounding, minimizing cable length, proper routing and securing of cables, and using appropriate insulation are essential factors to consider during device design and production. Proper cable arrangement contributes to minimizing electromagnetic interference, ensuring reliable and efficient operation of electronic devices.
Managing Electromagnetic Interference (EMI) is a significant element of electronic device design and production.
There are several strategies and techniques that can be applied to minimize the impact of electromagnetic interference on devices. Here are a few examples of EMI management strategies:
Designing EMI filters: EMI filters are used to reduce unwanted electromagnetic interference. They can be pass-through, suppressive, or combined filters that eliminate or limit electromagnetic interference within a specific frequency range. Designing and implementing appropriate EMI filters help minimize emissions and ensure adequate resistance to interference.
Shielding and shielded enclosures: Shielding is a technique that helps protect against electromagnetic interference. Using shielding in the form of suitable shielded enclosures, shielding of cables and printed circuit boards helps limit emissions and increase resistance to electromagnetic interference. Proper design and grounding of shields are crucial for effective shielding.
Arrangement of wires and cables: Properly arranging wires and cables in electronic devices is essential for minimizing electromagnetic interference. Separation of signals from power, minimizing cable length, avoiding current loops, and appropriate routing and securing of cables contribute to reducing emissions and increasing resistance to interference.
Designing printed circuit boards: Properly designing printed circuit boards (PCBs) is crucial for managing electromagnetic interference. Correct placement of components, signal traces, and grounding, minimizing current loops, and applying appropriate protective layers and ground planes help reduce electromagnetic interference.
Proper grounding: Proper grounding is extremely important for managing electromagnetic interference. Adequate grounding of shields, metal elements, power, and ground wires helps effectively dissipate electromagnetic interference and minimize its impact on devices.
Testing and verification: Conducting emission and susceptibility tests for electromagnetic interference during the design and production stages is an essential part of EMI management. Testing helps identify potential issues related to electromagnetic interference and allows for necessary modifications to meet EMC requirements.
Electromagnetic Interference (EMI) management strategies are essential to ensure proper functioning and compliance of electronic devices with EMC requirements. Proper design of EMI filters, shielding, cable and wire arrangement, PCB design, effective grounding, testing, and verification are examples of strategies that can be employed to minimize the impact of electromagnetic interference on devices.
Zanechat komentář