shopping_cart
Vozík
0,00 PLN
0
Skrýš
Musíte být přihlášen
Menu
-
moreX
-
Komponenty
-
-
Category
-
Polovodiče
- LED diody
- Tyristory
- Elektroizolační moduly
- Přemosťovací usměrňovače
-
Tranzistory
- Tranzistory | GeneSiC
- SiC MOSFET moduly | Mitsubishi
- SiC MOSFET moduly | STARPOWER
- Moduly ABB SiC MOSFET
- Moduly IGBT | MITSUBISHI
- Tranzistorové moduly | MITSUBISHI
- Moduly MOSFET | MITSUBISHI
- Tranzistorové moduly | ABB
- Moduly IGBT | POWEREX
- Moduly IGBT | INFINEON (EUPEC)
- Polovodičové prvky z karbidu křemíku (SiC)
- Go to the subcategory
- Ovladače brány
- Bloky napájení
- Go to the subcategory
-
Měniče proudu a napětí LEM
-
Měniče proudu | LEM
- Proudový převodník s uzavřenou zpětnou vazbou (C / L)
- Měnič proudu s otevřenou zpětnou vazbou (O / L)
- Měnič proudu napájený unipolárním napětím
- Převodníky v technologii Eta
- Vysoce přesné měniče proudu řady LF xx10
- Měniče proudu řady LH
- HOYS a HOYL - určené pro přímou montáž na vodičovou lištu
- Měniče proudu v technologii SMD řady GO-SME a GO-SMS
- AUTOMOTIVE převodníky proudu
- Go to the subcategory
- Převodníky napětí | LEM
- Precision Current Transducers | LEM
- Go to the subcategory
-
Měniče proudu | LEM
-
Pasivní součásti (kondenzátory, rezistory, pojistky, filtry)
- Rezistory
-
Pojistky
- Miniaturní pojistky pro elektronické obvody řady ABC a AGC
- Trubkové rychle působící pojistky
- Pojistkové vložky s časovým zpožděním s charakteristikami GL / GG a AM
- Ultrarychlé pojistkové články
- Rychle působící pojistky (britský a americký standard)
- Rychle působící pojistky (evropský standard)
- Pojistky pojezdu
- Pojistkové vložky vysokého napětí
- Go to the subcategory
-
Kondenzátory
- Motorové kondenzátory
- Elektrolytické kondenzátory
- Filmové kondenzátory
- Výkonové kondenzátory
- Kondenzátory pro stejnosměrné obvody
- Kondenzátory korekce účiníku
- Vysokonapěťové kondenzátory
- Indukční topné kondenzátory
- Kondenzátory pulsu a energie
- DC LINK kondenzátory
- Kondenzátory pro AC / DC obvody
- Go to the subcategory
- EMI filtry
- Superkondenzátory
- Přepěťová ochrana
- Go to the subcategory
-
Relé a stykače
- Teorie relé a stykačů
- 3fázová střídavá polovodičová relé
- 3fázová střídavá polovodičová relé
- Regulátory, ovládací prvky a příslušenství
- Měkké spouštění a reverzační stykače
- Elektromechanická relé
- Stykače
- Otočné spínače
-
Jednofázová střídavá polovodičová relé
- Jednofázová střídavá polovodičová relé, 1 řada | D2425 | D2450
- Jednofázová střídavá polovodičová relé řady CWA a CWD
- Jednofázová střídavá polovodičová relé řady CMRA a CMRD
- Jednofázová střídavá polovodičová relé řady PS
- Dvojitá a čtyřnásobná střídavá polovodičová relé řady D24 D, TD24 Q, H12D48 D.
- Jednofázová polovodičová relé řady GN
- Jednofázová střídavá polovodičová relé řady CKR
- Jednofázová AC relé na lištu DIN řady ERDA A ERAA
- Jednofázová AC relé pro proud 150 A.
- Dvojitá polovodičová relé integrovaná s chladičem pro lištu DIN
- Go to the subcategory
- Jednofázová AC polovodičová relé pro PCB
- Relé rozhraní
- Go to the subcategory
- Jádra a další indukční součásti
- Radiátory, varistory, tepelné ochrany
- Fanoušci
- Klimatizace, příslušenství pro elektrické skříně, chladiče
-
Baterie, nabíječky, vyrovnávací zdroje a střídače
- Baterie, nabíječky - teoretický popis
- Lithium-iontové baterie. Vlastní baterie. Systém správy baterií (BMS)
- Baterie
- Nabíječky baterií a příslušenství
- Záložní zdroj UPS a vyrovnávací napájecí zdroje
- Převaděče a příslušenství pro fotovoltaiku
- Úschovna energie
- Palivové články
- Lithium-iontové baterie
- Go to the subcategory
-
Automatika
- Futaba Drone Parts
- Koncové spínače, mikrospínače
- Senzory, převodníky
- Pyrometrie
- Počítadla, časovače, panelové měřiče
- Průmyslová ochranná zařízení
- Světelná a zvuková signalizace
- Termovizní kamera
- LED displeje
- Tlačítka a spínače
-
Zapisovače
- Zapisovač AL3000
- Rekordér KR2000
- Rekordér KR5000
- Měřič HN-CH s funkcí registrace vlhkosti a teploty
- Spotřební materiál pro zapisovače
- Rekordér 71VR1
- Zapisovač KR 3000
- Počítačové rekordéry řady R1M
- Počítačové rekordéry řady R2M
- PC rekordér, 12 izolovaných vstupů - RZMS-U9
- PC rekordér, USB, 12 izolovaných vstupů - RZUS
- Go to the subcategory
- Go to the subcategory
-
Kabely, dráty, vodiče, flexibilní připojení
- dráty
- lanka
- Kabely pro speciální aplikace
- košile
-
prýmky
- prýmky byt
- prýmky kolo
- Velmi flexibilní opletení - plochý
- Velmi flexibilní opletení - Round
- Měď opletené válcové
- Mědí štít a válcové
- Flexibilní zemnící pásky
- Opletení válcovité pozinkované a nerezové oceli
- PVC izolované měděné pletivo - teplota 85 ° C
- Ploché pletené hliníkové
- Connection Kit - prýmky a trubky
- Go to the subcategory
- Příslušenství pro trakční
- kabelové botky
- Ohebné izolované přípojnice
- Vícevrstvá ohebná lišta
- Systémy vedení kabelů
- Potrubí, trubky
- Go to the subcategory
- View all categories
-
Polovodiče
-
-
- Suppliers
-
Applications
- AC a DC pohony (střídače)
- Automatizace HVAC
- CNC obráběcí stroje
- Energy bank
- Indukční ohřev
- Komponenty pro prostředí s nebezpečím výbuchu (EX)
- Měření a regulace teploty
- Měření a regulace teploty
- Motory a transformátory
- Napájecí zdroje (UPS) a usměrňovací systémy
- Průmyslová automatizace
- Průmyslová automatizace
- Průmyslová ochranná zařízení
- Stroje na sušení a zpracování dřeva
- Stroje na tvarování plastů za tepla
- Svařovací stroje a svářecí stroje
- Těžba, hutnictví a slévárenství
- Tisk
- Tramvajová a železniční trakce
- Zařízení pro distribuční, řídicí a telekomunikační skříně
-
Instalace
-
-
Montaż urządzeń
- Instalace skříní
- Návrh a montáž skříní
- Instalace energetických systémů
- Komponenty
- Stroje stavěné na zakázku
- Výzkumná a vývojová práce
-
Průmyslové testery
- Výkonové polovodičové zkoušečky
- Zkoušečky elektrických přístrojů
- Testery varistorů a omezovačů přepětí
- Tester automobilových pojistek
- Qrr tester pro měření přechodného náboje v tyristorech a výkonových diodách
- Zkoušečka rotorů jističů řady FD
- Auditor testeru zařízení na zbytkový proud
- Zkoušečka kalibrace relé
- Tester vizuálních zkoušek pístních tyčí plynových pružin
- Silnoproudý tyristorový spínač
- Tester na lámání pletiva
- Go to the subcategory
- View all categories
-
-
-
Induktory
-
-
Modernizacja induktorów
-
-
-
Indukční zařízení
-
-
Urządzenia indukcyjne
-
Indukční topné generátory
-
Indukční generátory Ambrell
- Generátory: výkon 500 W, frekvence 150-400 kHz
- Generátory: Výkon 1,2 - 2,4 kW, frekvence 150 - 400 kHz
- Generátory: výkon 4,2 - 10 kW, frekvence 150 - 400 kHz
- Generátory: výkon 10 - 15 kW, frekvence 50 - 150 kHz
- Generátory: výkon 30-45 kW, frekvence 50-150 kHz
- Generátory: výkon 65-135 kW, frekvence 50-150 kHz
- Generátory: výkon 180-270 kW, frekvence 50-150 kHz
- Generátory: výkon 20-50 kW, frekvence 15-45 kHz
- Generátory: výkon 75-150 kW, frekvence 15-45 kHz
- Generátory: výkon 200-500 kW, frekvence 15-45 kHz
- Generátory: výkon 20-50 kW, frekvence 5-15 kHz
- Go to the subcategory
- Indukční topné generátory Denki Kogyo
-
Indukční topné generátory JKZ
- Generátory řady CX, frekvence: 50-120kHz, výkon: 5-25kW
- Generátory řady SWS, frekvence: 15-30kHz, výkon: 25-260kW
- Generátory (pece) pro tváření a kování řady MFS, frekvence: 0,5-10kHz, výkon: 80-500kW
- Tavicí pece MFS, frekvence: 0,5-10kHz, výkon: 70-200kW
- Generátory řady UHT, frekvence: 200-400kHz, výkon: 10-160kW
- Go to the subcategory
- Generátory světel pro indukční ohřev
- Indukční topné generátory Himmelwerk
- Go to the subcategory
-
Indukční generátory Ambrell
- Opravy a modernizace
- Periferní zařízení
- Aplikace
- Znalostní základna
- View all categories
-
Indukční topné generátory
-
-
-
Servis
-
-
asd
- Servis průmyslových chladičů vody a klimatizací
- Opravy a modernizace strojů
- Opravy výkonové elektroniky, elektroniky a automatizačních zařízení
- Vysokonapěťové napájecí zdroje pro elektrostatické odlučovače
- Průmyslové tiskárny a štítkovače
- Certificates / Entitlements
- View all categories
-
-
- Kontakt
- Zobacz wszystkie kategorie
Fotografie slouží pouze pro informační účely. Zobrazit specifikaci produktu
please use latin characters
Czujniki wilgotności - FG80... i połączone
Czujniki wilgotności i temperatury - TFG80... z elementem pomiarowym Polyga® dla pomiarów wilgotności względnej powietrza i temperatury – dla pomieszczeń i kanałów wentylacyjnych.Przegląd modeli
czujniki pasywne
FG80H Czujnik wilgotności
z wyjściem rezystancyjnym do 10 kΩ
TFG80H Czujnik wilgotności i temperatury
z wyjściem rezystancyjnym do 10 kΩ
czujniki aktywne
FG80J Czujnik wilgotności
0(4)...20mA lub 0...10V DC dla U=15...30V DC
TFG80J Czujnik wilgotności i temperatury
oba wyjścia 0(4)...20mA
lub 0...10V DC dla U=15...30V DC
FG80AC Czujnik wilgotności
oba wyjścia 0(4)...20mA
lub 0...10V DC dla U=24V AC
TFG80AC Czujnik wilgotności i temperatury
oba wyjścia 0(4)...20mA
lub 0...10V DC for U=24V AC
Opis czujnika:
Element pomiarowy "Polyga" produkowany przez firmę Galltec składa się z kilku taśm syntetycznych, z których każda spleciona jest z 90 włókien o średnicy 0,003mm. W pierwotnym stanie włókna nie są higroskopijne, właściwość ta jest nabywana dopiero po przeprowadzeniu specjalnego procesu, po którym włókna są wstanie pochłaniać wilgoć. Struktura molekularna poszczególnych włókien jest uporządkowana wzdłużnie. Gdy woda jest wchłaniana, zmienia się łańcuch molekularny, czego końcowym efektem jest zmiana długości. Utrata wody ma odwrotny wpływ na włókno. Jeżeli włókna są w równowadze z wilgotnością powietrza nie ma zjawiska pochłaniania bądź oddawania wody. W takim przypadku długość włókien jest stała i służy jako wskaźnik wilgotności względnej. Jeśli element pomiarowy jest wystawiony na powietrze o wilgotności względnej 100%, cienka powłoka wody tworzy się na powierzchni elementu (punkt rosy). Efekt fizyczny jest podobny do zanurzenia elementu pomiarowego w wodzie. W takim przypadku element jest nasycony. Jest to idealny punkt na kalibrację lub kontrolowanie czujnika. Element pomiarowy jest wodoodporny. Raz nadane właściwości higroskopijne dla elementu Gallteca pozostają stabilne, dopóki nie ulegną zniszczeniu przez zewnętrzne oddziaływania. Nie wymagana jest regeneracja włókien, chociaż przeprowadzenie takiej czynności nie zaszkodzi czujnikowi.
Budowa czujnika
Rozszerzanie się włókien (głównie wzdłuż) wykrywane jest przez system elektroniczny i przeliczane przez zintegrowany układ wstępnego przetwarzania sygnału w znormalizowany sygnał 0…20mA lub 4…20mA lub 0…10V. Element pomiarowy w kształcie wachlarza, który znajduje się na zewnątrz obudowy, chroniony jest przez perforowaną rurkę czujnika. Czujniki zaprojektowane są dla systemów bezciśnieniowych. Jednostka powinna być zainstalowana w takim miejscu, gdzie skraplana pary wodna nie ma możliwości dostania się do wnętrza obudowy. Preferowana pozycja to "czujnik pionowo w dół" lub "czujnik poziomo". W takich pozycjach osłona z otworem o średnicy 0.8mm nie dopuści do przedostania się wody do wnętrza. Czujniki typu TFG80 posiadają wbudowane sensory temperatury (większość Pt100) dla jednoczesnych pomiarów temperatury. Odczyty temperatury również przekształcane są w znormalizowane sygnały 0…20mA lub 4…20mA lub 0…10V.
Reakcja czujnika
Zgodnie z prawem dyfuzji występuje pewne opóźnienie w czasie zanim włókna zostaną nasycone podczas wchłaniania wody. Jest to decydujący czynnik do określenia czasu reakcji. Tak więc, dla jednego włókna o średnicy 3μm, można zmienić krótki czas nasycenia (kilka sekund). Badania empiryczne pokazują, że użycie łączonych czy tkanych włókien, tak jak jest w przypadku czujników Gallteca, powoduje wydłużenie czasu nasycenia. Dzieje się tak dlatego, że poszczególne włókna wpływają wzajemnie na siebie podczas wchłaniania i wydalania wody, a powiązana z tym zjawiskiem wartość wilgotności zostanie odczytana dopiero później. Pomiary pokazały, że przy prędkości wiatru 2m/s połowiczny czas wynosi ok. 1,2min. Oznacza to rzeczywisty czas reakcji ok. 30-40 minut. Czas połowiczny
Zachowanie termiczne
Temperatura 80oC jest podawana jako wartość maksymalna. Wyższe temperatury mogą występować przez krótkie okresy czasu. Ewentualnym rezultatem może być zmiana w strukturze molekularnej, która powoduje stały błąd . Maksymalna temperatura 80oC dotyczy tylko przypadków kiedy w medium nie występują substancje szkodliwe (kwasy, rozpuszczalniki itp.)Dane techniczne:
Dane fizyczne
Wilgotność
Zakres pomiarowy
|
0…100%rh
|
|
Dokładność pomiarowa
|
||
…>40%rh
|
±2,5%rh
|
|
…<40%rh
|
zgodnie z wykresem tolerancji
|
|
Zakres pracy
|
30…100%rh
|
Temperatura
Zakres pracy
|
-30…+80oC
|
|
Dokładność pomiarowa
|
±0.5oC
|
|
Mierzone medium
|
powietrze, bezciśnieniowe, nieagresywne
|
|
Dopuszczalna temperatura przy obudowie
|
-20…+60oC
|
|
Przy czujniku
|
-40…+80oC
|
|
Współczynnik średniej temperatury
|
0.1%/K dla 20oC i 50%rh
|
|
Regulacja
|
dla średniego ciśnienia powietrza 430m NN
|
|
Dopuszczalna prędkość powietrza
|
8m/s
|
|
Z osłoną
|
15m/s
|
|
Okres połowiczny dla v=2m/s
|
1.2min
|
|
Długość sensora; materiał
|
220mm; stal wysokiej jakości
|
|
Mocowanie
|
otwory w podstawie obudowy dla montażu kanałowego
|
|
(prod. Nr 20.009)
|
Konsola do montażu na ścianie
|
|
Pozycja montażu
|
czujnik pionowo w dół; lub poziomo
|
|
Podłączenia zacisków
|
dla przewodów o przekrojach 0.5mm2
|
|
Wejścia przewodów
|
złączka wkrętna M20x1,5
|
|
Kompatybilność elektromagnetyczna
|
||
Odporność na zakłócenia
|
EN 50 082-2
|
|
Emisja zakłóceń
|
EN 50 081-2
|
|
Obudowa
|
ABS
|
|
Ochrona
|
IP64
|
|
Masa
|
ok. 0,4 kg
|
Dane elektryczne dla sensorów pasywnych
Wilgotność
Wyjście 1
|
0-100 Ω liniowe 2-przewodowe
0-200 Ω liniowe 2-przewodowe 0-1000 Ω liniowe 2-przewodowe 100-138,5 Ω liniowe 2-przewodowe 5-100-5 Ω liniowe 3-przewodowe |
|
Dopuszczalne obciążenie
|
1W
|
|
Maksymalne napięcie
|
42V
|
|
Rezystancja izolacji
|
10 MΩ
|
Temperatura
Wyjście 2 (TFG80H)
Pt100 odn. DIN EN60751
dopuszczalne obciążenie
|
||
dla powietrza 1m/s i t=0.1K
|
2mA
|
Dane elektryczne dla sensorów aktywnych
Wilgotność
Wyjście 1
|
0-20mA lub 0-10V 4-przewodowe
lub 4-20mA 2-przewodowy (tylko z DC) |
Temperatura
Wyjście 2
|
0-20mA lub 0-10V 4-przewodowe
lub 4-20mA 2-przewodowy (tylko z DC) |
|
Napięcie zasilania
|
15-30V DC lub 24V AC ± 10%
|
|
Maks. obciążenie dla wyjścia prądowego
|
500Ω
|
|
Min. impedancja wyjścia napięciowego
|
10k Ω
|
|
Wewnętrzny pobór mocy
|
5mA, wersja DC
|
|
10mA, wersja AC
|
||
Zakres pomiaru temperatury
|
patrz tabela
|
|
Zniekształcenie liniowości
|
||
wyjścia temperaturowego
|
<0,5%
|
Model | Wilgotność | Temperatura | Napięcie zasilania | System przewodzenia | Nr Produktu | ||
---|---|---|---|---|---|---|---|
Zakres pomiarowy 1 | Wyjście 1 | Zakres pomiarowy 2 | Wyjście 2 | ||||
Przegląd czujników pasywnych | |||||||
FG80H |
0-100 %rh | 0-100 Ω | Max 42V | 2-pin |
44010100 |
||
0-100 %rh | 0-200 Ω | Max 42V | 2-pin |
44010200 |
|||
0-100 %rh | 0-1000 Ω | Max 42V | 2-pin |
44010300 |
|||
0-100 %rh | 100-138,5 Ω | Max 42V | 2-pin |
44010400 |
|||
0-100 %rh | 5-100-5 Ω | Max 42V | 3-pin |
44010600 |
|||
TFG80H |
0-100 %rh | 0-100 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700150 |
0-100 %rh | 0-200 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700250 |
|
0-100 %rh | 0-1000 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700350 |
|
0-100 %rh | 100-138,5 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700450 |
|
0-100 %rh | 5-100-5 Ω | +5…+80oC | Pt100 | Max 42V | 3-pin |
44700650 |
|
Przegląd czujników aktywnych U=15…30V DC i/lub 24V AC (20 … 28V AC) | |||||||
FG80J
|
0-100 %rh | 0-20 mA | 15 – 30V DC | 3/4 - przewody |
44013000 |
||
0-100 %rh | 0-20 mA | 24V AC | 3/4 - przewody |
44014200 |
|||
0-100 %rh | 0-10 V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44014700 |
|||
0-100 %rh | 4-20 mA | 15 – 30V DC | 2 - przewody |
44014800 |
|||
TFG80J
|
0-100 %rh | 0-20 mA | 0…+40oC | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44513030 |
0-100 %rh | 0-20 mA | -30…+60oC | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44573030 |
|
0-100 %rh | 0-20 mA | -10…+90oC** | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44623030 |
|
0-100 %rh | 0-20 mA | 0…+100oC* | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44543030 |
|
0-100 %rh | 0-20 mA | 0…+40oC | 0-20mA | 24V AC | 4 - przewody |
44514242 |
|
0-100 %rh | 0-20 mA | -30…+60oC | 0-20mA | 24V AC | 4 – przewody |
44574242 |
|
0-100 %rh | 0-20 mA | -10…+90oC | 0-20mA | 24V AC | 4 - przewody |
44624242 |
|
0-100 %rh | 0-20 mA | 0…+100oC* | 0-20mA | 24V AC | 4 - przewody |
44544242 |
|
0-100 %rh | 0-10V DC | 0…+40oC | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44514747 |
|
0-100 %rh | 0-10V DC | -30…+60oC | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44574747 |
|
0-100 %rh | 0-10V DC | -10…+90oC | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44624747 |
|
0-100 %rh | 0-10V DC | 0…+100oC* | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44544747 |
|
0-100 %rh | 0-20 mA | 0…+40oC | 0-20mA | 15 – 30V DC | 2 - przewody |
44514848 |
|
0-100 %rh | 0-20 mA | -30…+60oC | 0-20mA | 15 – 30V DC | 2 - przewody |
44574848 |
|
0-100 %rh | 0-20 mA | -10…+90oC | 0-20mA | 15 – 30V DC | 2 - przewody |
44624848 |
|
0-100 %rh | 0-20 mA | 0…+100oC* | 0-20mA | 15 – 30V DC | 2 - przewody |
44544848 |
|
Specjalne
|
0-100 %rh | 0-20 mA | Pt100 | rezystancja | 15 – 30V DC | 3/4 – przewody |
44703050 |
0-100 %rh | 0-10V DC | Pt100 | rezystancja | 15 – 30V DC 24V AC |
3/4 - przewody |
44704750 |
|
0-100 %rh | 4-20 mA | Pt100 | rezystancja | 15 – 30V DC | 2 - przewody |
44704850 |
Schemat tolerancji i wilgotności Schemat połączeń czujników pasywnych z wyjściem rezystancyjnym Schemat połączeń dla czujnika aktywnego U=15 – 30V DC Schemat połączeń dla czujników aktywnych UB=24V AC (±10%)
WYMIARY
AKCESORIA
Ważne Zdolność powietrza do pochłaniania wody jest zależna między innymi od temperatury. Jest to zasada fizyczna (określone w wykresie h-x Moliera). Im wyższa temperatura powietrza, tym większa ilość pary jaka może zostać zaabsorbowana do punktu nasycenia (100%rh). Jeśli czujnik jest skalibrowany podczas zmiennych temperatur, wynik jest nieregularny, zróżnicowane medium pomiarowe automatycznie powoduje błędy kalibracji. Tabela poniżej pokazuje wpływ temperatury na wilgotność powietrza. Jeśli na przykład kalibracja była przeprowadzona w temperaturze 20oC i wilgotności 50%rh, przy zmianach temperatury w zakresie ±1K, różnica w wilgotności mierzonego medium (powietrza) może mieć wartość ±3,2%rh.
10oC | 20oC | 30oC | 50oC | |
---|---|---|---|---|
10%rh | ±0,7%rh | ±0,6%rh | ±0,6%rh | ±0,5%rh |
50%rh | ±3,5%rh | ±3,2%rh | ±3,0%rh | ±2,6%rh |
90%rh | ±6,3%rh | ±5,7%rh | ±5,4%rh | ±4,6%rh |
Kalibracja
Czujniki Gallteca są kalibrowane w temperaturze 23oC i wilgotności 50%rh w średnim ciśnieniu powietrza odpowiadającym 430m NN. Jeżeli jednak wymagane będą dalsze dostosowania, należy przestrzegać poniższej procedury:
- Zapewnić stałą temperaturę i wilgotność w okolicy czujnika
- Jeśli to możliwe sprawdzić wilgotność psychrometrem (nie używać urządzeń z elementami pojemnościowymi).
- Elementy testowane powinny przez minimum 1 godzinę znajdować się w niezmiennych warunkach testowych.
- Wszystkie czujniki Gallteca posiadają możliwość dostosowania. W większości przypadków dokonuje się tego poprzez śrubę regulacyjną, zabezpieczoną specjalnym lakierem. Po usunięciu lakieru można dokonać regulacji. Po przeprowadzeniu kalibracji śrubę regulacyjną należy ponownie zabezpieczyć.
Konserwacja – Instrukcje obsługi – Efekt zanieczyszczeń
Element pomiarowy nie wymaga konserwacji jeżeli otaczające powietrze jest czyste. Czynniki korozyjne i zawierające rozpuszczalnik, zależnie od rodzaju i koncentracji czynnika, mogą wywoływać nieprawidłowe pomiary i powodować uszkodzenie elementu pomiarowego. Należy unikać bezpośredniego wystawienia na promienie słoneczne. Substancje osadzone na czujniku mogą tworzyć cienką powłokę nie przepuszczającą wody (uwaga ta dotyczy wszystkich czujników wilgotności z higroskopijnymi elementami pomiarowymi). Takimi substancjami są aerozole żywiczne, aerozole lakiernicze, cząstki dymu itp. Dzięki temu, że czujnik Gallteca są wodoodporne można je myć czystą wodą. Nie można używać żadnych rozpuszczalników. Zaleca się użycie słabego detergentu. Jednak wszystkie pozostałości detergentu należy zawsze dokładnie spłukać.
Produkty Gallteca zostały poddane specjalnemu procesowi, dzięki któremu uzyskano długoterminową trwałość. Nie wymaga się przeprowadzenia regeneracji, chociaż nie jest ona szkodliwa dla czujnika.
Współczynnik temperaturowy i wpływ samoogrzewania mogą zmieniać się zależnie od miejsca i rodzaju aplikacji (zwłaszcza u czujników gdzie systemy pomiarowy i elektroniczny połączone są w jednej obudowie).
OSTRZEŻENIE Gwarancja nie obowiązuje, jeżeli stwierdzi się naruszenie wnętrza czujnika.
Instrukcja instalacji
Często podczas instalacji występują zakłócenia. Zachowanie poprawnej procedury montażu pozwala na uniknięcie większości zakłóceń. Poniżej przedstawiono podstawowe zasady, jakie należy stosować.
W celu uniknięcia zakłóceń należy stosować tłumienie zgodnie z VDE0875 i VDE0874 (VDE – są to normy Niemieckie dotyczące inżynierii elektrycznej Vorschriftenwerk Deutscher Elektrotechniker).
Podstawowo, zakłócenia powinny być usuwane u źródła, tam gdzie materiał tłumiący jest najbardziej efektywny. Zakłócenia mogą powstawać również od pól elektromagnetycznych występujących wokół linii sygnałowych. Normy EMV odnoszą się do odpowiednich środków ochrony (kompatybilność elektromagnetyczna). Wszystkie produkty Gallteca zaprojektowane są zgodnie z normami Europejskimi EN50081-2 i EN50082-2 (dla stref przemysłowych). Należy również wykorzystywać dodatkowe środki ochrony.
Nieuniknione źródła zakłóceń powinny być umiejscowione w znacznej odległości od systemów sterowania.
Linie danych i sygnalizacyjne nie powinny być układane równolegle z liniami sterowania, sieciowymi i zasilania.
Dla linii sygnalizacyjnych i danych należy używać przewodów ekranowanych, gdzie ekran powinien być połączony z zaciskiem uziemiającym. Upewnić się że obwody uziemiające i prądy zakłóceń nie narastają w skutek drugiego połączenia uziemiającego.
Dla urządzeń posiadających połączenie sieciowe, zaleca się użycie oddzielnego obwodu sieciowego.
Podczas procesu przełączania, odbiorniki mocy takie jak styczniki przełączające, zawory magnetyczne itp. wytwarzają napięcia indukowane, które mogą powodować zakłócenia. Na rynku dostępne są artykuły ochronne i tłumiące, które działają najlepiej jeżeli zostaną zastosowane bezpośrednio na źródle zakłóceń. Zastosowanie odpowiedniego tłumienia zwiększa żywotność takich podzespołów jak przekaźniki, mikroprzełączniki. Kolejne problemy powstałe podczas instalacji mogą być spowodowane przez prowadzenie linii sygnałowych razem ze zwykłymi przewodami. Zakłócenia występują często przy instalowaniu urządzeń różnych producentów. Również dla takich przypadków istnieje wiele podzespołów, np. wzmacniaczy izolujących.
Zašlete dotaz
Máte zájem o tento produkt? Potřebujete další informace nebo individuální ceny?
Kontaktujte nás
ZEPTEJTE SE O PRODUKT
close
Děkujeme za zaslání zprávy.
Odpovíme co nejdříve.
ZEPTEJTE SE O PRODUKT
close
musíš být přihlášen
Czujniki wilgotności - FG80... i połączone
Czujniki wilgotności i temperatury - TFG80... z elementem pomiarowym Polyga® dla pomiarów wilgotności względnej powietrza i temperatury – dla pomieszczeń i kanałów wentylacyjnych.Przegląd modeli
czujniki pasywne
FG80H Czujnik wilgotności
z wyjściem rezystancyjnym do 10 kΩ
TFG80H Czujnik wilgotności i temperatury
z wyjściem rezystancyjnym do 10 kΩ
czujniki aktywne
FG80J Czujnik wilgotności
0(4)...20mA lub 0...10V DC dla U=15...30V DC
TFG80J Czujnik wilgotności i temperatury
oba wyjścia 0(4)...20mA
lub 0...10V DC dla U=15...30V DC
FG80AC Czujnik wilgotności
oba wyjścia 0(4)...20mA
lub 0...10V DC dla U=24V AC
TFG80AC Czujnik wilgotności i temperatury
oba wyjścia 0(4)...20mA
lub 0...10V DC for U=24V AC
Opis czujnika:
Element pomiarowy "Polyga" produkowany przez firmę Galltec składa się z kilku taśm syntetycznych, z których każda spleciona jest z 90 włókien o średnicy 0,003mm. W pierwotnym stanie włókna nie są higroskopijne, właściwość ta jest nabywana dopiero po przeprowadzeniu specjalnego procesu, po którym włókna są wstanie pochłaniać wilgoć. Struktura molekularna poszczególnych włókien jest uporządkowana wzdłużnie. Gdy woda jest wchłaniana, zmienia się łańcuch molekularny, czego końcowym efektem jest zmiana długości. Utrata wody ma odwrotny wpływ na włókno. Jeżeli włókna są w równowadze z wilgotnością powietrza nie ma zjawiska pochłaniania bądź oddawania wody. W takim przypadku długość włókien jest stała i służy jako wskaźnik wilgotności względnej. Jeśli element pomiarowy jest wystawiony na powietrze o wilgotności względnej 100%, cienka powłoka wody tworzy się na powierzchni elementu (punkt rosy). Efekt fizyczny jest podobny do zanurzenia elementu pomiarowego w wodzie. W takim przypadku element jest nasycony. Jest to idealny punkt na kalibrację lub kontrolowanie czujnika. Element pomiarowy jest wodoodporny. Raz nadane właściwości higroskopijne dla elementu Gallteca pozostają stabilne, dopóki nie ulegną zniszczeniu przez zewnętrzne oddziaływania. Nie wymagana jest regeneracja włókien, chociaż przeprowadzenie takiej czynności nie zaszkodzi czujnikowi.
Budowa czujnika
Rozszerzanie się włókien (głównie wzdłuż) wykrywane jest przez system elektroniczny i przeliczane przez zintegrowany układ wstępnego przetwarzania sygnału w znormalizowany sygnał 0…20mA lub 4…20mA lub 0…10V. Element pomiarowy w kształcie wachlarza, który znajduje się na zewnątrz obudowy, chroniony jest przez perforowaną rurkę czujnika. Czujniki zaprojektowane są dla systemów bezciśnieniowych. Jednostka powinna być zainstalowana w takim miejscu, gdzie skraplana pary wodna nie ma możliwości dostania się do wnętrza obudowy. Preferowana pozycja to "czujnik pionowo w dół" lub "czujnik poziomo". W takich pozycjach osłona z otworem o średnicy 0.8mm nie dopuści do przedostania się wody do wnętrza. Czujniki typu TFG80 posiadają wbudowane sensory temperatury (większość Pt100) dla jednoczesnych pomiarów temperatury. Odczyty temperatury również przekształcane są w znormalizowane sygnały 0…20mA lub 4…20mA lub 0…10V.
Reakcja czujnika
Zgodnie z prawem dyfuzji występuje pewne opóźnienie w czasie zanim włókna zostaną nasycone podczas wchłaniania wody. Jest to decydujący czynnik do określenia czasu reakcji. Tak więc, dla jednego włókna o średnicy 3μm, można zmienić krótki czas nasycenia (kilka sekund). Badania empiryczne pokazują, że użycie łączonych czy tkanych włókien, tak jak jest w przypadku czujników Gallteca, powoduje wydłużenie czasu nasycenia. Dzieje się tak dlatego, że poszczególne włókna wpływają wzajemnie na siebie podczas wchłaniania i wydalania wody, a powiązana z tym zjawiskiem wartość wilgotności zostanie odczytana dopiero później. Pomiary pokazały, że przy prędkości wiatru 2m/s połowiczny czas wynosi ok. 1,2min. Oznacza to rzeczywisty czas reakcji ok. 30-40 minut. Czas połowiczny
Zachowanie termiczne
Temperatura 80oC jest podawana jako wartość maksymalna. Wyższe temperatury mogą występować przez krótkie okresy czasu. Ewentualnym rezultatem może być zmiana w strukturze molekularnej, która powoduje stały błąd . Maksymalna temperatura 80oC dotyczy tylko przypadków kiedy w medium nie występują substancje szkodliwe (kwasy, rozpuszczalniki itp.)Dane techniczne:
Dane fizyczne
Wilgotność
Zakres pomiarowy
|
0…100%rh
|
|
Dokładność pomiarowa
|
||
…>40%rh
|
±2,5%rh
|
|
…<40%rh
|
zgodnie z wykresem tolerancji
|
|
Zakres pracy
|
30…100%rh
|
Temperatura
Zakres pracy
|
-30…+80oC
|
|
Dokładność pomiarowa
|
±0.5oC
|
|
Mierzone medium
|
powietrze, bezciśnieniowe, nieagresywne
|
|
Dopuszczalna temperatura przy obudowie
|
-20…+60oC
|
|
Przy czujniku
|
-40…+80oC
|
|
Współczynnik średniej temperatury
|
0.1%/K dla 20oC i 50%rh
|
|
Regulacja
|
dla średniego ciśnienia powietrza 430m NN
|
|
Dopuszczalna prędkość powietrza
|
8m/s
|
|
Z osłoną
|
15m/s
|
|
Okres połowiczny dla v=2m/s
|
1.2min
|
|
Długość sensora; materiał
|
220mm; stal wysokiej jakości
|
|
Mocowanie
|
otwory w podstawie obudowy dla montażu kanałowego
|
|
(prod. Nr 20.009)
|
Konsola do montażu na ścianie
|
|
Pozycja montażu
|
czujnik pionowo w dół; lub poziomo
|
|
Podłączenia zacisków
|
dla przewodów o przekrojach 0.5mm2
|
|
Wejścia przewodów
|
złączka wkrętna M20x1,5
|
|
Kompatybilność elektromagnetyczna
|
||
Odporność na zakłócenia
|
EN 50 082-2
|
|
Emisja zakłóceń
|
EN 50 081-2
|
|
Obudowa
|
ABS
|
|
Ochrona
|
IP64
|
|
Masa
|
ok. 0,4 kg
|
Dane elektryczne dla sensorów pasywnych
Wilgotność
Wyjście 1
|
0-100 Ω liniowe 2-przewodowe
0-200 Ω liniowe 2-przewodowe 0-1000 Ω liniowe 2-przewodowe 100-138,5 Ω liniowe 2-przewodowe 5-100-5 Ω liniowe 3-przewodowe |
|
Dopuszczalne obciążenie
|
1W
|
|
Maksymalne napięcie
|
42V
|
|
Rezystancja izolacji
|
10 MΩ
|
Temperatura
Wyjście 2 (TFG80H)
Pt100 odn. DIN EN60751
dopuszczalne obciążenie
|
||
dla powietrza 1m/s i t=0.1K
|
2mA
|
Dane elektryczne dla sensorów aktywnych
Wilgotność
Wyjście 1
|
0-20mA lub 0-10V 4-przewodowe
lub 4-20mA 2-przewodowy (tylko z DC) |
Temperatura
Wyjście 2
|
0-20mA lub 0-10V 4-przewodowe
lub 4-20mA 2-przewodowy (tylko z DC) |
|
Napięcie zasilania
|
15-30V DC lub 24V AC ± 10%
|
|
Maks. obciążenie dla wyjścia prądowego
|
500Ω
|
|
Min. impedancja wyjścia napięciowego
|
10k Ω
|
|
Wewnętrzny pobór mocy
|
5mA, wersja DC
|
|
10mA, wersja AC
|
||
Zakres pomiaru temperatury
|
patrz tabela
|
|
Zniekształcenie liniowości
|
||
wyjścia temperaturowego
|
<0,5%
|
Model | Wilgotność | Temperatura | Napięcie zasilania | System przewodzenia | Nr Produktu | ||
---|---|---|---|---|---|---|---|
Zakres pomiarowy 1 | Wyjście 1 | Zakres pomiarowy 2 | Wyjście 2 | ||||
Przegląd czujników pasywnych | |||||||
FG80H |
0-100 %rh | 0-100 Ω | Max 42V | 2-pin |
44010100 |
||
0-100 %rh | 0-200 Ω | Max 42V | 2-pin |
44010200 |
|||
0-100 %rh | 0-1000 Ω | Max 42V | 2-pin |
44010300 |
|||
0-100 %rh | 100-138,5 Ω | Max 42V | 2-pin |
44010400 |
|||
0-100 %rh | 5-100-5 Ω | Max 42V | 3-pin |
44010600 |
|||
TFG80H |
0-100 %rh | 0-100 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700150 |
0-100 %rh | 0-200 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700250 |
|
0-100 %rh | 0-1000 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700350 |
|
0-100 %rh | 100-138,5 Ω | +5…+80oC | Pt100 | Max 42V | 2-pin |
44700450 |
|
0-100 %rh | 5-100-5 Ω | +5…+80oC | Pt100 | Max 42V | 3-pin |
44700650 |
|
Przegląd czujników aktywnych U=15…30V DC i/lub 24V AC (20 … 28V AC) | |||||||
FG80J
|
0-100 %rh | 0-20 mA | 15 – 30V DC | 3/4 - przewody |
44013000 |
||
0-100 %rh | 0-20 mA | 24V AC | 3/4 - przewody |
44014200 |
|||
0-100 %rh | 0-10 V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44014700 |
|||
0-100 %rh | 4-20 mA | 15 – 30V DC | 2 - przewody |
44014800 |
|||
TFG80J
|
0-100 %rh | 0-20 mA | 0…+40oC | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44513030 |
0-100 %rh | 0-20 mA | -30…+60oC | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44573030 |
|
0-100 %rh | 0-20 mA | -10…+90oC** | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44623030 |
|
0-100 %rh | 0-20 mA | 0…+100oC* | 0-20mA | 15 – 30V DC | 3/4 - przewody |
44543030 |
|
0-100 %rh | 0-20 mA | 0…+40oC | 0-20mA | 24V AC | 4 - przewody |
44514242 |
|
0-100 %rh | 0-20 mA | -30…+60oC | 0-20mA | 24V AC | 4 – przewody |
44574242 |
|
0-100 %rh | 0-20 mA | -10…+90oC | 0-20mA | 24V AC | 4 - przewody |
44624242 |
|
0-100 %rh | 0-20 mA | 0…+100oC* | 0-20mA | 24V AC | 4 - przewody |
44544242 |
|
0-100 %rh | 0-10V DC | 0…+40oC | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44514747 |
|
0-100 %rh | 0-10V DC | -30…+60oC | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44574747 |
|
0-100 %rh | 0-10V DC | -10…+90oC | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44624747 |
|
0-100 %rh | 0-10V DC | 0…+100oC* | 0-10V DC | 15 – 30V DC 24V AC |
3/4 - przewody |
44544747 |
|
0-100 %rh | 0-20 mA | 0…+40oC | 0-20mA | 15 – 30V DC | 2 - przewody |
44514848 |
|
0-100 %rh | 0-20 mA | -30…+60oC | 0-20mA | 15 – 30V DC | 2 - przewody |
44574848 |
|
0-100 %rh | 0-20 mA | -10…+90oC | 0-20mA | 15 – 30V DC | 2 - przewody |
44624848 |
|
0-100 %rh | 0-20 mA | 0…+100oC* | 0-20mA | 15 – 30V DC | 2 - przewody |
44544848 |
|
Specjalne
|
0-100 %rh | 0-20 mA | Pt100 | rezystancja | 15 – 30V DC | 3/4 – przewody |
44703050 |
0-100 %rh | 0-10V DC | Pt100 | rezystancja | 15 – 30V DC 24V AC |
3/4 - przewody |
44704750 |
|
0-100 %rh | 4-20 mA | Pt100 | rezystancja | 15 – 30V DC | 2 - przewody |
44704850 |
Schemat tolerancji i wilgotności Schemat połączeń czujników pasywnych z wyjściem rezystancyjnym Schemat połączeń dla czujnika aktywnego U=15 – 30V DC Schemat połączeń dla czujników aktywnych UB=24V AC (±10%)
WYMIARY
AKCESORIA
Ważne Zdolność powietrza do pochłaniania wody jest zależna między innymi od temperatury. Jest to zasada fizyczna (określone w wykresie h-x Moliera). Im wyższa temperatura powietrza, tym większa ilość pary jaka może zostać zaabsorbowana do punktu nasycenia (100%rh). Jeśli czujnik jest skalibrowany podczas zmiennych temperatur, wynik jest nieregularny, zróżnicowane medium pomiarowe automatycznie powoduje błędy kalibracji. Tabela poniżej pokazuje wpływ temperatury na wilgotność powietrza. Jeśli na przykład kalibracja była przeprowadzona w temperaturze 20oC i wilgotności 50%rh, przy zmianach temperatury w zakresie ±1K, różnica w wilgotności mierzonego medium (powietrza) może mieć wartość ±3,2%rh.
10oC | 20oC | 30oC | 50oC | |
---|---|---|---|---|
10%rh | ±0,7%rh | ±0,6%rh | ±0,6%rh | ±0,5%rh |
50%rh | ±3,5%rh | ±3,2%rh | ±3,0%rh | ±2,6%rh |
90%rh | ±6,3%rh | ±5,7%rh | ±5,4%rh | ±4,6%rh |
Kalibracja
Czujniki Gallteca są kalibrowane w temperaturze 23oC i wilgotności 50%rh w średnim ciśnieniu powietrza odpowiadającym 430m NN. Jeżeli jednak wymagane będą dalsze dostosowania, należy przestrzegać poniższej procedury:
- Zapewnić stałą temperaturę i wilgotność w okolicy czujnika
- Jeśli to możliwe sprawdzić wilgotność psychrometrem (nie używać urządzeń z elementami pojemnościowymi).
- Elementy testowane powinny przez minimum 1 godzinę znajdować się w niezmiennych warunkach testowych.
- Wszystkie czujniki Gallteca posiadają możliwość dostosowania. W większości przypadków dokonuje się tego poprzez śrubę regulacyjną, zabezpieczoną specjalnym lakierem. Po usunięciu lakieru można dokonać regulacji. Po przeprowadzeniu kalibracji śrubę regulacyjną należy ponownie zabezpieczyć.
Konserwacja – Instrukcje obsługi – Efekt zanieczyszczeń
Element pomiarowy nie wymaga konserwacji jeżeli otaczające powietrze jest czyste. Czynniki korozyjne i zawierające rozpuszczalnik, zależnie od rodzaju i koncentracji czynnika, mogą wywoływać nieprawidłowe pomiary i powodować uszkodzenie elementu pomiarowego. Należy unikać bezpośredniego wystawienia na promienie słoneczne. Substancje osadzone na czujniku mogą tworzyć cienką powłokę nie przepuszczającą wody (uwaga ta dotyczy wszystkich czujników wilgotności z higroskopijnymi elementami pomiarowymi). Takimi substancjami są aerozole żywiczne, aerozole lakiernicze, cząstki dymu itp. Dzięki temu, że czujnik Gallteca są wodoodporne można je myć czystą wodą. Nie można używać żadnych rozpuszczalników. Zaleca się użycie słabego detergentu. Jednak wszystkie pozostałości detergentu należy zawsze dokładnie spłukać.
Produkty Gallteca zostały poddane specjalnemu procesowi, dzięki któremu uzyskano długoterminową trwałość. Nie wymaga się przeprowadzenia regeneracji, chociaż nie jest ona szkodliwa dla czujnika.
Współczynnik temperaturowy i wpływ samoogrzewania mogą zmieniać się zależnie od miejsca i rodzaju aplikacji (zwłaszcza u czujników gdzie systemy pomiarowy i elektroniczny połączone są w jednej obudowie).
OSTRZEŻENIE Gwarancja nie obowiązuje, jeżeli stwierdzi się naruszenie wnętrza czujnika.
Instrukcja instalacji
Często podczas instalacji występują zakłócenia. Zachowanie poprawnej procedury montażu pozwala na uniknięcie większości zakłóceń. Poniżej przedstawiono podstawowe zasady, jakie należy stosować.
W celu uniknięcia zakłóceń należy stosować tłumienie zgodnie z VDE0875 i VDE0874 (VDE – są to normy Niemieckie dotyczące inżynierii elektrycznej Vorschriftenwerk Deutscher Elektrotechniker).
Podstawowo, zakłócenia powinny być usuwane u źródła, tam gdzie materiał tłumiący jest najbardziej efektywny. Zakłócenia mogą powstawać również od pól elektromagnetycznych występujących wokół linii sygnałowych. Normy EMV odnoszą się do odpowiednich środków ochrony (kompatybilność elektromagnetyczna). Wszystkie produkty Gallteca zaprojektowane są zgodnie z normami Europejskimi EN50081-2 i EN50082-2 (dla stref przemysłowych). Należy również wykorzystywać dodatkowe środki ochrony.
Nieuniknione źródła zakłóceń powinny być umiejscowione w znacznej odległości od systemów sterowania.
Linie danych i sygnalizacyjne nie powinny być układane równolegle z liniami sterowania, sieciowymi i zasilania.
Dla linii sygnalizacyjnych i danych należy używać przewodów ekranowanych, gdzie ekran powinien być połączony z zaciskiem uziemiającym. Upewnić się że obwody uziemiające i prądy zakłóceń nie narastają w skutek drugiego połączenia uziemiającego.
Dla urządzeń posiadających połączenie sieciowe, zaleca się użycie oddzielnego obwodu sieciowego.
Podczas procesu przełączania, odbiorniki mocy takie jak styczniki przełączające, zawory magnetyczne itp. wytwarzają napięcia indukowane, które mogą powodować zakłócenia. Na rynku dostępne są artykuły ochronne i tłumiące, które działają najlepiej jeżeli zostaną zastosowane bezpośrednio na źródle zakłóceń. Zastosowanie odpowiedniego tłumienia zwiększa żywotność takich podzespołów jak przekaźniki, mikroprzełączniki. Kolejne problemy powstałe podczas instalacji mogą być spowodowane przez prowadzenie linii sygnałowych razem ze zwykłymi przewodami. Zakłócenia występują często przy instalowaniu urządzeń różnych producentów. Również dla takich przypadków istnieje wiele podzespołów, np. wzmacniaczy izolujących.
Komentáře (0)
Vaše hodnocení nelze odeslat
Nahlásit komentář
Opravdu chcete nahlásit tento komentář?
Zpráva odeslána
Váš podnět byl odeslán a bude ho posuzovat moderátor.
Váš podnět nelze odeslat
Napište svůj názor
Zkontrolovat před odesláním
Váš komentář byl přidán a bude zobrazen po schválení moderátorem.
Vaši recenzi nelze odeslat