Sie müssen eingeloggt sein
-
zurückX
-
Komponenten
-
-
Category
-
Halbleiter
- Dioden
- Thyristoren
-
Elektroisolierte Module
- Elektroisolierte Module | VISHAY (IR)
- Elektroisolierte Module | INFINEON (EUPEC)
- Elektroisolierte Module | Semikron
- Elektroisolierte Module | POWEREX
- Elektroisolierte Module IXYS
- Elektroisolierte Module | POSEICO
- Elektroisolierte Module ABB
- Elektroisolierte Module | TECHSEM
- Gehen Sie zur Unterkategorie
- Brückengleichrichter
-
Transistoren
- Transistoren | GeneSiC
- SiC-MOSFET-Module | Mitsubishi
- SiC-MOSFET-Module | STARPOWER
- ABB SiC-MOSFET-Module
- IGBT-Module | MITSUBISHI
- Transistormodule | MITSUBISHI
- MOSFET-Module von MITSUBISHI
- Transistormodule | ABB
- IGBT-Module | POWEREX
- IGBT-Module | INFINEON (EUPEC)
- Halbleiterkomponente aus Siziliumkarbid
- Gehen Sie zur Unterkategorie
- Treiber
- Leistungsblöcke
- Gehen Sie zur Unterkategorie
-
Strom- und Spannungswandler von LEM
-
Stromwandler von LEM
- Stromwandler mit geschlossener Rückkopplungsschleife (C / L)
- Stromwandler mit offener Rückkopplungsschleife (O / L)
- Stromwandler mit unipolarer Spannung
- Wandler in der Eta-Technologie
- Hochgenaue Stromwandler der Serie LF xx10
- Stromwandler der Serie LH
- HOYS und HOYL - zur direkten Montage auf einer Leiterschiene
- Stromwandler in der SMD-Technologie der Serien GO-SME und GO-SMS
- AUTOMOBIL-Stromwandler
- Gehen Sie zur Unterkategorie
- Spannungswandler | LEM
- Präzisionsstromwandler | LEM
- Gehen Sie zur Unterkategorie
-
Stromwandler von LEM
-
Passive Elemente (Kondensatoren, Widerstände, Sicherungen, Filter)
- Widerstände
-
Sicherungen
- Miniatursicherungen für elektronische Schaltungen der Serien ABC und AGC
- Schnelle Röhrensicherungen
- Zeitverzögerungssicherungen mit GL / GG- und AM-Eigenschaften
- Ultraschnelle Sicherungseinsätze
- Britische und amerikanische schnelle Sicherungen
- Schnelle europäische Sicherungen
- Traktionssicherungen
- Hochspannungs-Sicherungseinsätze
- Gehen Sie zur Unterkategorie
-
Kondensatoren
- Kondensatoren für Motoren
- Elektrolytkondensator
- Island Filmkondensatoren
- Leistungskondensatoren
- Kondensatoren für Gleichstromkreise
- Kondensatoren zur Leistungskompensation
- Hochspannungskondensatoren
- Induktionsheizkondensatoren
- Impulskondensatoren
- DC LINK-Kondensatoren
- Kondensatoren für AC / DC-Schaltungen
- Gehen Sie zur Unterkategorie
- Entstörungsfilter
- Superkondensatoren
-
Überspannungsschutz
- Überspannungsableiter für HF-Anwendungen
- Überspannungsableiter für Bildverarbeitungssysteme
- Überspannungsableiter für Stromleitungen
- Überspannungsableiter für LED
- Überspannungsableiter für die Photovoltaik
- Überspannungsableiter für Wägesysteme
- Überspannungsableiter für den Feldbus
- Gehen Sie zur Unterkategorie
- Gehen Sie zur Unterkategorie
-
Relais und Schütze
- Theorie der Relais und Schütze
- Dreiphasen-Halbleiterrelais AC
- Halbleiterrelais DC
- Regler, Steuerungen und Zubehör
- Sanftstarter und Schaltschütze
- Elektromechanische Relais
- Schütze
- Drehschalter
-
Einphasen-Halbleiterrelais AC
- Einphasen-Wechselstrom-Halbleiterrelais, Serie 1 | D2425 | D2450
- Einphasige AC-Halbleiterrelais der Serien CWA und CWD
- Einphasen-Wechselstrom-Halbleiterrelais der Serien CMRA und CMRD
- Einphasen-Wechselstrom-Halbleiterrelais, PS-Serie
- Doppel- und Vierfach-Wechselstrom-Halbleiterrelais, Serie D24 D, TD24 Q, H12D48 D.
- 1-phasige Festkörperrelais, gn-Serie
- Einphasige Wechselstrom-Halbleiterrelais, Serie ckr
- Einphasen-Wechselstromrelais der ERDA- UND ERAA-SERIE für die DIN-Schiene
- Einphasige Wechselstromrelais für 150A Strom
- Doppelte Halbleiterrelais mit integriertem Kühlkörper für eine DIN-Schiene
- Gehen Sie zur Unterkategorie
- Einphasen-Halbleiterrelais AC für Leiterplatten
- Interface-Relais
- Gehen Sie zur Unterkategorie
- Induktive Komponente
- Radiatoren, Varistoren, Thermoschütze
- Ventilatoren
- Klimaanlagen, Ausrüstung für Schaltschränke, Industriekühler
-
Batterien, Ladegeräte, Pufferstromversorgungen und Wechselrichter
- Batterien, Ladegeräte - theoretische Beschreibung
- Lithium-Ionen-Batterien. Kundenspezifische Batterien. Batteriemanagementsystem (BMS)
- Batterien
- Ladegeräte und Zubehör
- USV-Notstromversorgung und Pufferstromversorgung
- Konverter und Zubehör für die Photovoltaik
- Energiespeicher
- Brennstoffzellen
- Lithium-Ionen-Batterien
- Gehen Sie zur Unterkategorie
-
Automation
- Futaba Drone Parts
- Grenzschalter, Microschalter
- Sensoren, Wandler
-
Pyrometer
- Infrarot-Temperatursensor, kabellos, wasserdicht, IR-TE-Serie
- Infrarot-Temperatursensor, kabellos, IR-TA-Serie
- Infrarot-Temperatursensor, kabellos, IR-H-Serie
- Ein schnelles stationäres Pyrometer in einem sehr kleinen IR-BA-Gehäuse
- Lichtleiter-Temperatursensoren, IR-FA-Serie
- Das stationäre Pyrometer der IR-BZ-Serie
- Gehen Sie zur Unterkategorie
- Zähler, Zeitrelais, Einbaumessgeräte
- Industrielle Schutzausrüstung
- Licht- und Signalentechnik
- Infrarot-Kamera
- LED-Anzeigen
- Taster, Schalter und Zubehör
-
Datenerfassung und Datenlogger
- Temperaturschreiber mit Display und Textdruck AL3000
- Digitale Temperaturschreiber mit LCD Display KR 2000-Serie
- Sicherheitstemperaturwächter KR 5000
- Temperatur / Feuchtigkeit Hand-Meter mit Datenlogger HN-CH-Serie
- Messdatenerfassung und Datenlogger Zubehör
- Kompakter Bildschirmschreiber 71VR1
- Sicherheitstemperaturwächter KR 3000-Serie
- PC-Datenerfassung R1M-Serie
- PC-Datenerfassung R2M-Serie
- PC-Datenerfassung, 12 universelle isolierte Eingänge, Typ RZMS-U9
- PC-Datenerfassung, 12 universelle isolierte Eingänge, USB, RZUS-Serie
- Gehen Sie zur Unterkategorie
- Gehen Sie zur Unterkategorie
-
Adern, Litzen, Schutzhüllen, Flexible Verbingungen
- Drähte
- Litzen
-
Kabel für spezielle Anwendungen
- Verlängerungskabel und Kompensations
- Kabel für Thermoelemente
- Die Verbindungsdrähte zu czyjnków PT
- Mehradrige Kabel Temp. -60 ° C bis + 1400 ° C
- SILICOUL Mittelspannungskabeln
- Zündkabel
- Heizleitungen
- Einadriges Temp. -60 ° C bis + 450 ° C
- Zugbegleiter
- Heizleitungen im Ex
- Gehen Sie zur Unterkategorie
- Schläuche
-
Geflochtene Kabel
- Zöpfe flach
- Zöpfen Runde
- Sehr flexible Geflecht - flach
- Sehr flexible Geflecht - Rund
- Kupfergeflecht zylindrischen
- Kupfergeflechtschirm und zylindrischer
- Flexible Massebänder
- Geflechte zylindrischen verzinkt und Edelstahl
- PVC-isolierte Kupferlitzen - Temperatur 85 ° C
- Flach geflochtene Aluminium
- Connection Kit - Zöpfe und Röhren
- Gehen Sie zur Unterkategorie
- Leitungen und Sonstiges für Traktion
- Crimpverbinder
- Flexible isolierte Kupferschienen
- Mehrschichte flexible Kupferschienen
- Kabelrohre, Kabelkanäle und Kabelführung
- Kabelschutzschlauchsysteme
- Gehen Sie zur Unterkategorie
- Alle Kategorien
-
Halbleiter
-
-
- Lieferanten
-
Applications
- AC- und DC-Antriebe (Wechselrichter)
- Ausrüstung für Verteilungs-, Steuerungs- und Telekommunikationsschränke
- Bergbau, Metallurgie und Gründung
- CNC-Werkzeugmaschinen
- Energy bank
- HLK-Automatisierung
- Induktionsheizung
- Industrielle Automatisierung
- Industrielle Automatisierung
- Industrielle Schutzvorrichtungen
- Komponenten für explosionsgefährdete Bereiche (EX)
- Maschinen zum Tiefziehen von Kunststoffen
- Maschinen zum Trocknen und Verarbeiten von Holz
- Motoren und Transformatoren
- Schweißmaschinen und Schweißmaschinen
- Straßenbahn- und Bahntraktion
- Temperaturmessung und -regelung
- Temperaturmessung und -regelung
- USV- und Gleichrichtersysteme
-
Installation
-
-
Montaż urządzeń
- Schaltschränkebau
- Design und Montage von Schränken
- Installation von Stromversorgungssystemen
- Komponenten
- Maschinen, die auf Bestellung gebaut werden
- F&E-Forschungs- und Entwicklungsarbeiten
-
Produktionsprozessen Messungsanlagen
- Dioden und Thyristoren Messungsanlagen
- Schaltungen Messungsanlagen
- Varistor- und Überspannungsableiter-Tester
- Messungsanlagen für Kfz-Sicherungen
- Qr Sperrverzögerungsladung Messungsanlagen
- FD-Serie Schaltungen Rotorentester
- Audit-Messungsanlagen der Fehlerstromschutzschalter
- Tester für Kalibrierung der Relais
- Anlage für Video Qualitätskontrollsysteme
- Hochstrom-Thyristorschalter
- Maschenbruch-Tester
- Gehen Sie zur Unterkategorie
- Alle Kategorien
-
-
-
Inductors
-
-
Modernizacja induktorów
- Reparatur gebrauchter Induktivitäten
- Modernisierung von Induktoren
-
Produktion neuer Induktoren
- Härten von Kurbelwellen
- Aushärten der Bandsägezähne
- Erwärmung der Elemente vor dem Verkleben
- Härtung von Laufbahnen von Radnabenlagern für Kraftfahrzeuge
- Härtung der Antriebsgetriebekomponenten
- Härten von Stufenwellen
- Erwärmung in Kontraktionsfugen
- Scan-Härtung
- Weichlöten
- Knüppelheizungen
- Gehen Sie zur Unterkategorie
- Wissensbasis
- Alle Kategorien
-
-
-
Induktionsgeräte
-
-
Urządzenia indukcyjne
-
Generatoren für Induktionserwärmung
-
Ambrell Induktionsheizgeneratoren
- Generatoren: Leistung 500 W, Frequenz 150-400 kHz
- Generatoren: Leistung 1.2 - 2.4 kW, Frequenz 150 - 400 kHz
- Generatoren: Leistung 4.2 - 10 kW, Frequenz 150 - 400 kHz
- Generatoren: Leistung 10 - 15 kW, Frequenz 50 - 150 kHz
- Generatoren: Leistung 30-45 kW, Frequenz 50-150 kHz
- Generatoren: Leistung 65-135 kW, Frequenz 50-150 kHz
- Generatoren: Leistung 180-270 kW, Frequenz 50-150 kHz
- Generatoren: Leistung 20-35-50 kW, Frequenz 15-45 kHz
- Generatoren: Leistung 75-150 kW, Frequenz 15-45 kHz
- Generatoren: Leistung 200-500 kW, Frequenz 15-45 kHz
- Generatoren: Leistung 20-50 kW, Frequenz 5-15 kHz
- Gehen Sie zur Unterkategorie
- Denki Kogyo Induktionsheizungsgeneratoren
-
JKZ Induktionsheizungsgeneratoren
- Generatoren der CX-Serie, Frequenz: 50-120 kHz, Leistung: 5-25 kW
- Generatoren der SWS-Serie, Frequenz: 15-30 kHz, Leistung: 25-260 kW
- Generatoren (Öfen) zum Formen und Schmieden der MFS-Serie, Frequenz: 0,5-10 kHz, Leistung: 80-500 kW
- MFS-Schmelzöfen, Frequenz: 0,5-10 kHz, Leistung: 70-200 kW
- Generatoren der UHT-Serie, Frequenz: 200-400 kHz, Leistung: 10-160 kW
- Gehen Sie zur Unterkategorie
- Lampengeneratoren für Induktionsheizung
- Himmelwerk Induktionsheizungsgeneratoren
- Gehen Sie zur Unterkategorie
-
Ambrell Induktionsheizgeneratoren
- Reparaturen und Modernisierung
- Peripheriegeräte
-
Applikationen
- Medizinische Anwendungen
- Automobilindustrie Applikationen
- Löten
- Hartlöten
- Hartlöten von Aluminium
- Löten von magnetischen Edelstahlwerkzeugen
- Präzisionslöten
- Löten unter Atmosphäre
- Löten von Kühlkörperkappen aus Messing und Stahl
- Löten von Sintercarbiden
- Löten der Kupferspitze und des Drahtes
- Gehen Sie zur Unterkategorie
- Wissensbasis
- Alle Kategorien
-
Generatoren für Induktionserwärmung
-
-
-
Service
-
-
asd
- Wartung von Brauchwasserkühlern und Klimaanlagen
- Reparaturen und Modernisierung von Maschinen
- Reparatur der Leistungselektronik und elektonischen und automatischen Vorrichtungen
- Hochspannungsnetzteile für Elektrofilter
- Industriedrucker und Etikettierer
- Certyfikaty / uprawnienia
- Alle Kategorien
-
-
- Kontakt
- Zobacz wszystkie kategorie
Czynniki wpływające na palność ziarna zbożowego i elementy oceny zagrożenia wybuchem pyłu.
Bezpieczeństwo procesów przemysłowych obejmuje zarówno bezpieczeństwo zawodowe pracowników, jak i bezpieczeństwo prowadzonych procesów technologicznych.
Oba te obszary tworzą wspólnie w zakładzie produkcyjnym ogólne bezpieczeństwo, które zgodnie z obowiązującymi przepisami prawnymi musi być zapewnione. Bezpieczeństwo procesowe, które jest integralną częścią ogólnego bezpieczeństwa, w szczególności odnosi się do instalacji procesowych zawierających i przetwarzających substancje chemiczne. Dotyczy więc zagadnień projektowania i eksploatacji instalacji, w których zachodzą różne procesy chemiczne i fizyczne związane z przetwarzaniem substancji chemicznych (operacje jednostkowe) w użyteczne produkty finalne, koncentrując się na zagadnieniach zapobiegania niepożądanym uwolnieniom mieszanin i/lub energii, a także przeciwdziałania skutkom takich uwolnień. Świadomość zachowania bezpieczeństwa procesowego towarzyszy projektowaniu każdej instalacji chemicznej czy rafineryjnej na wszystkich etapach jej rozwoju. W to wliczają się również obiekty magazynujące i przetwarzające substancje stałe. Jest to część każdego projektu procesowego, który jest głównym produktem inżynierii procesowej.
Strefy zagrożone wybuchem w branży spożywczej
Branża spożywcza jest specyficzną grupą zakładów przemysłowych posiadających na swoim terenie substancje stałe w postaci zbóż, cukru, herbaty, kawy, kukurydzy itp. Specyficzność ta polega na fakcie, że analiza zagrożenia pyłowego różni się od gazowego i dodatkowo inne parametry brane są pod uwagę w procesie oceny ryzyka. W przypadku wyrobów zbożowych, czynnikiem stwarzającym wysoki stopień zagrożenia pożarowego i wybuchowego jest obecność pyłu zbożowego i mącznego. Przy okazji warto odnotować, że Polska jest jednym z największych producentów zbóż w Europie i jednym z większych na świecie. Zgodnie z danymi GUS za 2018 r. roczna produkcja zboża wynosi w naszym kraju ok. 27 mln ton, w tym ok. 10 ton pszenicy i 4 mln pszenżyta. Powoduje to, że istnieje duże prawdopodobieństwo awarii w trakcie procesów jakim ono podlega. W trakcie procesu technologicznego przyjęcia, czyszczenia, suszenia i konserwacji zbóż oraz przemiału zbóż na mąki powstają miejscowe zanieczyszczenia pyłowe zwane pyłem technologicznym. Wytwarzane są one wskutek ocierania się wewnątrz urządzeń ziarna o siebie oraz o elementy maszyn. Pyły unoszą się więc wewnątrz urządzeń podczas transportu poziomego i pionowego, maszyn i urządzeń czyszczących, suszenia i rozdrabniania ziarna oraz przesiewania i sortowania oraz pakowania rozdrobnionych półproduktów oraz wyrobów gotowych.
Z badań wynika, że spośród wszystkich wybuchów pyłów blisko 25% stanowią eksplozje pyłów w przemyśle spożywczo-rolniczym i paszowym, przy czym najbardziej narażone na eksplozje są silosy, systemy odpylające i wentylacyjne – w tym suszarnie i magazyny przeznaczone do suszenia zbóż.
Silosy przeznaczone do przechowywania zboża, będącego bazowym surowcem podlegającym dalszej obróbce.
Wnętrza zbiorników stanowi strefę 20.
Wielkości właściwości fizykochemicznych
Zgodnie z przyjętą praktyką, każdy pył palny/wybuchowy należy przebadać w jednostce posiadającej odpowiednie ku temu laboratorium lub skorzystać z gotowych kart charakterystyki właściwych dla danej substancji. Wśród szeregu wielkości opisujących ich właściwości fizykochemiczne, wyróżnia się kilka parametrów:
Pmax [bar] – to maksymalne ciśnienie wybuchu zmierzone podczas wybuchu mieszaniny pyłowopowietrznej w zamkniętej objętości sfery pomiarowej (atmosfery wybuchowej). Wartość tego parametru zależna jest od ciśnienia początkowego.
(dp/dt)max [bar/s] – to maksymalny przyrost ciśnienia wybuchu atmosfery wybuchowej w jednostce czasu. Parametr ten określa „dynamikę” procesu wybuchu danego pyłu i na jego podstawie określany jest kolejny parametr Kst.
Kst [m * bar/s] – stała pyłowa, zwana wskaźnikiem wybuchowości, stanowi podstawę do międzynarodowej klasyfikacji wybuchowości pyłów (patrz tabela poniżej).
DGW [g/m3 ] – dolna granica wybuchowości. Tym mianem określa się najniższe stężenie paliwa (w tym wypadku pyłu) z powietrzem (w sferze pomiarowej), przy którym wystąpił wybuch. Poniżej tej wartości mieszanina palna jest zbyt uboga w składnik palny oraz zawiera zbyt dużo utleniacza, aby zainicjować wybuch.
GST [%] – graniczne stężenie tlenu to maksymalne stężenie tlenu w mieszaninie pyłu palnego z powietrzem i obojętnym gazem, dla którego nie występuje wybuch.
MEZ [mJ] – minimalna energia zapłonu mieszaniny pyłowo-powietrznej to minimalna energia wyładowania iskrowego (energia o zadanej wartości) pomiędzy dwoma elektrodami, która wywoła zapłon mieszaniny pyłowo-powietrznej.
MTZw [oC] – minimalna temperatura zapłonu warstwy pyłu to minimalna temperatura gorącej płyty, na której dojdzie do zapłonu umieszczonej w pierścieniu 5 mm warstwy pyłu.
MTZo [oC] – minimalna temperatura, w której dochodzi do zapłonu obłoku pyłu w piecu o znanej temperaturze ścianek i atmosfery
Klasa zagrożenia |
Kst [m * bar/s] |
Rodzaj zagrożenia |
ST0 |
0 |
Pył niewybuchowy |
ST1 |
1 – 200 |
Pył słabo wybuchowy |
ST2 |
201 - 300 |
Pył silnie wybuchowy |
ST3 |
>300 |
Pył bardzo silnie wybuchowy |
Tab. Klasy wybuchowości związane z parametrem Kst.
Czynniki wpływające na parametry wybuchowości
Na parametry wybuchowości pyłów może mieć wpływ szereg czynników:
- skład chemiczny cząsteczek pyłu (różne pierwiastki i związki spalają się w odmienny sposób);
- rozmiar cząsteczek pyłu (zazwyczaj parametry wybuchowości zmieniają się w zależności od rozmiaru ziaren pyłu – mniejsze ziarna spalają się szybciej. Następuje wzrost parametrów wybuchowości wraz ze zmniejszaniem się rozmiaru cząstek pyłu;
- wilgotność pyłu (duża zawartość wilgoci w pyle utrudnia jego spalanie);
- stężenie pyłu (określa ilość materiału palnego w mieszaninie pyłowo-powietrznej);
- stężenie tlenu (do inicjacji procesu spalania konieczne jest pewne graniczne stężenie tlenu – przy zbyt małym stężeniu tlenu nie zostanie zainicjowany proces spalania);
Właściwości fizyczne ziarna zbóż wiążą się ściśle z jego strukturą chemiczną i wywierają istotny wpływ na procesy życiowe składowanej masy zbożowej. Najważniejszym procesem życiowym ziarna jest oddychanie. Ziarno pobiera z powietrza tlen, spala substancje chemiczne i wydziela dwutlenek węgla oraz wodę. Wskutek tych procesów wytwarzane jest ciepło, które powoduje nasilenie oddychania ziarna i wzrost jego temperatury w dużym stopniu zależnej od stopnia zawilgocenia. W przypadku wzrostu wilgotności i temperatury przy dostępie tlenu ziarno pęcznieje i nabiera skłonności do samo ogrzania, a w konsekwencji do samozapalenia. Najbardziej ulega samo ogrzaniu ziarno o wzmożonych procesach życiowych, a więc ziarno niedojrzałe, świeżo zebrane i porośnięte oraz silnie zanieczyszczone nasionami chwastów. Samozapaleniu się ziarna sprzyja także sortowanie będące jednym z charakterystycznych procesów dla tej substancji. Jest to efekt sypkości i niejednorodności ziarna wchodzącego w skład magazynowej masy zbożowej. Występuje ono podczas przesypywania i przenoszenia ziarna, ale najczęściej przy napełnianiu i opróżnianiu komór zbożowych. Zawartość komory staje się niejednolita: w środku gromadzi się ziarno grube i średnie o najmniejszym stopniu zanieczyszczenia, a w kierunku ścian coraz drobniejsze o większym stopniu zanieczyszczeń. Przy wysokiej wilgotności tam też istnieje największe prawdopodobieństwo samozapalenia ziaren.
Kolejnymi cechami ziarna są higroskopijność, przewodnictwo cieplne oraz wydzielanie się pyłu przy wszystkich operacjach obróbki technologicznej. Higroskopijność polega na przyjmowaniu lub oddawaniu wilgotności, w zależności od wilgotności otoczenia. W takich miejscach należy się liczyć z większą ewentualnością samozapalenia. Ziarno jest złym przewodnikiem ciepła, zapala się w temperaturze około 450°C, wartość parametru ciepła ziarna wynosi 3,5 - 4,0 Mcal/kg, a spala się bezpłomieniowo żarząc się.
System pakowania mąki. Proces obejmuje transport, automatyczne ważenie i ładowanie wyrobu do specjalnych, antyelektrostatycznych toreb. Obszar klasyfikowany jako strefa 21.
Istnieje wiele rodzajów instalacji zajmujących się magazynowaniem i przetwórstwem ziarna zbożowego, więc nie da się określić jednego standardu jednak na podstawie zakładu piekarniczo-cukierniczego, dla którego DACPOL przygotowywał dokument oceny ryzyka wybuchowego można wytypować pewne charakterystyczne fragmenty linii technologicznej.
Rodzaje instalacji ze względu na funkcjonalność
Przykładową instalację można podzielić, ze względu na funkcjonalność, na następujące części:
- służącą do transportu pneumatycznego ziarna zbożowego przy załadunku silosów,
- przeznaczaną do magazynowania ziarna zbożowego w silosach zewnętrznych,
- służącą do transportu ślimakowego ziarna zbożowego przy rozładunku silosów,
- służącą do przygotowania ziarna do przemiału poprzez oczyszczanie mechaniczne
i nawilżanie, - obejmującą młyn do przemiału ziarna wraz z osprzętem,
- wewnętrzny zintegrowany system magazynowania mąki, w skład którego wchodzą cztery silosy wraz z osprzętem oraz instalacja służąca do transportu pneumatycznego mąki i jej dozowania na stanowiskach przygotowania ciasta.
Elementy mogące stanowić zagrożenie wybuchowe
Na podstawie przyjętych metod analitycznych dokonuje się stosownych operacji mających na celu określenie, który z elementów może stanowić zagrożenie wybuchowe, jego skalę oraz potencjalne skutki. Biorąc pod uwagę przykładową strukturę zakładu przytaczaną powyżej, można zidentyfikować przynajmniej kilkanaście obszarów i elementów potencjalnie niebezpiecznych. Należy tu wyszczególnić następujące rodzaje urządzeń i czynniki mogące spowodować awarię, a w konsekwencji pożar lub wybuch:
- Przenośniki ślimakowe, przenośniki łańcuchowe ,,rodlery”:
- skrzywienie wału ślimaka, tarcie łopatki o obudowę, zerwanie łańcucha, tarcie ogniwa, przedostanie się do wnętrza przedmiotu metalowego,
- zagrzanie i zapalenie pyłów.
- Podnośniki czerpakowe:
Zatarcie taśmy gruntowej, zapalenie taśmy i pyłów możliwe jest z następujących powodów:
- powstanie zatoru,
- zaczepienie czerpaka o obudowę,
- zablokowanie podnośnika wskutek przedostania się do stopy obcych przedmiotów,
- nadmiernego rozluźnienia taśmy gruntowej,
- zatarcia łożysk w przypadku niedostatecznego smarowania.
- Łuszczarki, maszyny sortujące do obróbki łuski ziarna.
Istnieje niebezpieczeństwo zapalenia lub wybuchów pyłów w przypadku:
- przedostania się do bębna przedmiotu metalowego,
- skrzenie wskutek rozluźnienia uchwytu cepa lub szczotki wywołane tarciem,
- płaszcz szmerglowy lub metalowy bębna,
- iskrzenie wskutek odłupania się kawałka masy ściernej,
- zagrzanie łożysk.
- Urządzenia do śrutowania, mlewniki walcowe, rzutniki otrębowe:
Zapalenie lub wybuch pyłu może nastąpić w przypadku dostania się do wnętrza przedmiotu metalowego i zaiskrzenie lub zagrzanie się tego przedmiotu wskutek tarcia.
- Transport pneumatyczny:
W urządzeniach i przewodach transportu pneumatycznego oraz urządzeniach zasypowych (cyklony) występują wybuchowe stężenia pyłów, które zderzając się powodują powstanie ładunków elektryczności statycznej. Powstanie wybuchu lub pożaru może nastąpić wskutek:
- wyładowania elektryczności statycznej,
- iskrzenia powodowanego tarciem łopatek wentylatora o obudowę,
- zagrzania się łożysk wentylatora.
- Urządzenia aspiracyjne:
Istnieje niebezpieczeństwo zapalenia się pyłu zbożowego lub mącznego w przypadku:
- powstania źródła pożaru w jednym z wyżej omówionych urządzeń,
- iskrzenia spowodowanego tarciem łopatek wentylatora,
- zatarcie łożysk wentylatora.
- Przy zasypie komór zbożowych i mącznych:
Niebezpieczeństwo istnieje wskutek przedostania się otwartego ognia lub zapalenia się pyłu od wadliwych urządzeń elektrycznych.
Układ przesiewaczy i fragment linii technologicznej oczyszczającej transportowane zboże z zanieczyszczeń i zbędnych dodatków. Obszar klasyfikowany jako strefa 21.
Etapy analizy oceny zagrożenia wybuchem
Analizy stanowiące podstawę dla sporządzenia oceny zagrożenia wybuchem są prowadzone etapowo. W pierwszym etapie zostaje przeprowadzona identyfikacja i weryfikacja danych dotyczących realizacji prac/ czynności i procesu w przedmiotowych obszarach. Prace są prowadzone w oparciu o udostępnioną przez Zleceniodawcę dokumentację zawierającą charakterystyki technologiczne instalacji i obiektów, a także specyfikacje fizykochemiczne zawierające parametry zapalności i wybuchowości stosowanych substancji palnych. Uzupełnienie i weryfikacja danych z dokumentacji stanowią informacje pozyskane w trakcie wizji lokalnej.
Na bazie zebranych informacji i danych procesowych jest przeprowadzana analiza identyfikacyjna zagrożenia wybuchem obejmująca:
- identyfikację substancji palnych,
- identyfikację miejsc wystąpienia potencjalnych atmosfer wybuchowych,
- identyfikację i klasyfikację źródeł emisji substancji palnych oraz
- określenie prawdopodobieństwa wystąpienia atmosfer wybuchowych.
Wyniki przeprowadzonych analiz identyfikacyjnych zagrożenia wybuchem zostaną wykorzystane do określenia klasyfikacyjnego stref zagrożenia wybuchem. Pełna dokumentacja klasyfikacyjna jest uzupełniona o graficzną dokumentację klasyfikacyjną zawierającą plany sytuacyjne obrazujące rodzaj i zasięg stref zagrożenia wybuchem oraz lokalizację i identyfikację źródeł emisji, zgodnie z zasadami określonymi w Polskich Normach. We wszystkich obszarach, gdzie sklasyfikowano strefy zagrożenia wybuchem, przeprowadzana jest analiza identyfikacyjna efektywnych źródeł zapłonu. Identyfikowane źródła zapłonu są klasyfikowane pod kątem prawdopodobieństwa uaktywnienia.
Hinterlassen Sie einen Kommentar