Menu
-
BackX
-
Components
-
-
Category
-
Semiconductors
- Diodes
- Thyristors
-
Electro-insulated Modules
- Electro-insulated Modules | VISHAY (IR)
- Electro-insulated Modules | INFINEON (EUPEC)
- Electro-insulated Modules | Semikron
- Electro-insulated Modules | POWEREX
- Electro-insulated Modules | IXYS
- Electro-insulated Modules | POSEICO
- Electro-insulated Modules | ABB
- Electro-insulated Modules | TECHSEM
- Go to the subcategory
- Bridge Rectifiers
-
Transistors
- Transistors | GeneSiC
- SiC MOSFET Modules | Mitsubishi
- SiC MOSFET Modules | STARPOWER
- Module SiC MOSFET ABB’s
- IGBT Modules | MITSUBISHI
- Transistor Modules | MITSUBISHI
- MOSFET Modules | MITSUBISHI
- Transistor Modules | ABB
- IGBT Modules | POWEREX
- IGBT Modules | INFINEON (EUPEC)
- Silicon Carbide (SiC) semiconductor elements
- Go to the subcategory
- Gate Drivers
- Power Blocks
- Go to the subcategory
-
Electrical Transducers
-
Current Transducers | LEM
- Closed-Loop Current Transducers (C/L)
- Open-Loop Current Transducers (O/L)
- Current Transducers supplied with unipolar voltage
- 'Eta' Current Transducers
- Current Transducers - LF xx10 Series
- Current Transducers - LH Series
- Current Transducer - HOYL and HOYS Series
- Current Transducers - GO–SME & GO–SMS Series
- AUTOMOTIVE current transducers
- Go to the subcategory
-
Voltage Transducers | LEM
- Voltage Transducers - LV Series
- Voltage Transducers - DVL Series
- Precision Voltage Transducers with double magnetic core - CV Series
- Voltage Transducer for Traction - DV 4200/SP4
- Voltage Transducers - DVM Series
- Voltage Transducer - DVC 1000-P
- Voltage Transducers - DVC 1000 Series
- Go to the subcategory
- Precision Current Transducers | LEM
- Go to the subcategory
-
Current Transducers | LEM
-
Passive components (capacitors, resistors, fuses, filters)
- Resistors
-
Fuses
- Miniature Fuses for electronic circuits - ABC & AGC Series
- Tubular Fast-acting Fuses
- Time-delay Fuse Links with GL/GG & AM characteristics
- Ultrafast Fuse Links
- Fast-acting Fuses (British & American standard)
- Fast-acting Fuses (European standard)
- Traction Fuses
- High-voltage Fuse Links
- Go to the subcategory
- Capacitors
- EMI Filters
- Supercapacitors
- Power surge protection
- Go to the subcategory
-
Relays and Contactors
- Relays and Contactors - Theory
- 3-Phase AC Semiconductor Relays
- DC Semiconductor Relays
- Controllers, Control Systems and Accessories
- Soft Starters and Reversible Relays
- Electromechanical Relays
- Contactors
- Rotary Switches
-
Single-Phase AC Semiconductor Relays
- AC ONE PHASE RELAYS 1 series| D2425 | D2450
- One phase semiconductor AC relays CWA and CWD series
- One phase semiconductor AC relays CMRA and CMRD series
- One phase semiconductor AC relays - PS series
- Double and quadruple semiconductor AC relays - D24 D, TD24 Q, H12D48 D series
- One phase semiconductor relays - gn series
- Ckr series single phase solid state relays
- One phase AC semiconductor relays for DIN bus - ERDA I ERAA series
- 150A AC single phase relays
- Rail Mountable Solid State Relays With Integrated Heat Sink - ENDA, ERDA1 / ERAA1 series
- Go to the subcategory
- Single-Phase AC Semiconductor Relays for PCBs
- Interface Relays
- Go to the subcategory
- Cores and Other Inductive Components
- Heatsinks, Varistors, Thermal Protection
- Fans
- Air Conditioning, Accessories for Electrical Cabinets, Coolers
-
Batteries, Chargers, Buffer Power Supplies and Inverters
- Batteries, Chargers - Theoretical Description
- Modular Li-ion Battery Building Blocks, Custom Batteries, BMS
- Batteries
- Battery Chargers and Accessories
- Uninterruptible Power Supply and Buffer Power Supplies
- Inverters and Photovoltaic Equipments
- Energy storage
- Fuel cells
- Lithium-ion batteries
- Go to the subcategory
-
Automatics
- Futaba Drone Parts
- Limit Switches, Microswitches
- Sensors, Transducers
-
Infrared Thermometers (Pyrometers)
- IR-TE Series - Water-proof Palm-sized Radiation Thermometer
- IR-TA Series - Handheld Type Radiation Thermometer
- IR-H Series - Handheld Type Radiation Thermometer
- IR-BA Series - High-speed Compact Radiation Thermometer
- IR-FA Series - Fiber Optic Radiation Thermometer
- IR-BZ Series - Compact Infrared Thermometers
- Go to the subcategory
- Counters, Time Relays, Panel Meters
- Industrial Protection Devices
- Light and Sound Signalling
- Thermographic Camera
- LED Displays
- Control Equipments
-
Recorders
- Hybrid Recorders - AL3000 Series | CHINO
- Graphic Recorder - KR2000 Series | CHINO
- Ubiquitous Recorders - KR5000 Series | CHINO
- Palm-sized Temperature/Humidity Meters - HN-CH Series | CHINO
- Consumables for Recorders
- 71VR1 - Compact Paperless Recorder | M-SYSTEM
- Graphic Recorder - KR3000 Series | CHINO
- PC Recorders - R1M Series | M-SYSTEM
- PC Recorders - R2M Series | M-SYSTEM
- PC Recorders - RZMS Series | M-SYSTEM
- PC Recorders - RZUS Series | M-SYSTEM
- Go to the subcategory
- Go to the subcategory
-
Cables, Litz wires, Conduits, Flexible connections
- Wires
- Litz wires
- Cables for extreme applications
- Sleevings
-
Braids
- Flat Braids
- Round Braids
- Very Flexible Flat Braids
- Very Flexible Round Braids
- Cylindrical Cooper Braids
- Cylindrical Cooper Braids and Sleevings
- Flexible Earthing Connections
- Galvanized and Stainless Steel Cylindrical Braids
- PCV Insulated Copper Braids (temp. up to 85C)
- Flat Aluminium Braids
- Junction Set - Braids and Tubes
- Go to the subcategory
- Traction Equipment
- Cable Terminals
- Flexible Insulated Busbars
- Flexible Multilayer Busbars
- Cable Duct Systems
- Hoses
- Go to the subcategory
- View all categories
-
Semiconductors
-
-
- Suppliers
-
Applications
- CNC Machine Tools
- DC and AC Drives (Inverters)
- Energetics
- Energy bank
- Equipment and Components for Hazardous Areas [Ex]
- Equipment for Distribution, Control and Telecommunications Cabinets
- HVAC Automation
- Induction Heating
- Industrial Automation
- Industrial Protective Devices
- Machines for Drying and Wood Processing
- Machines for Thermoforming Plastics
- Mining, Metallurgy and Foundry
- Motors and Transformers
- Power Supplies (UPS) and Rectifier Systems
- Printing
- Temperature Measurement and Regulation
- Test and Laboratory Measurements
- Tram and Railway Traction
- Welding Machines
-
Assembly
-
-
Montaż urządzeń
- Assembly of equipment on request
- Designing and Assembling of Busbar Cabinets, Switching Cabinets, Power Cabinets
- Power systems installation
- Components
- Machines built for order
- R&D research and development work
-
Industrial Testers
- Tester for diodes and thyristors measurement
- Thermal and motor circuit breakers testing stand
- Varistors and surge protectors testers
- Car fuses testing stand
- Tester for the power diode and thyristor reverse recovery charge Qrr measurement
- Rotor tester FD series
- Circuit breakers tester
- Tester for calibrating relays
- Video inspection tester for gas spring piston rods
- High-current thyristor switch
- Mesh ripping tester
- Go to the subcategory
- View all categories
-
-
-
Inductors
-
-
Modernizacja induktorów
- Repair of used inductors
- Modernization of inductors
-
Production of new inductors
- Inductors for crankshaft hardening
- Hardening of band saw teeth
- Inductors for heating elements before gluing
- Hardening of raceways of automotive wheel hub bearings
- Hardening of the drive transmission components
- Hardening of stepped shafts
- Heating in contraction joints
- Induction for scanning hardening
- Soft soldering
- Billet heaters
- Go to the subcategory
- Knowledge base
- View all categories
-
-
-
Induction devices
-
-
Urządzenia indukcyjne
-
Induction heating generators
-
Induction Heating Products Ambrell
- Generators power 500 W, frequency 150 - 400 kHz
- Generators power 1.2 - 2.4 kW, frequency 150 - 400 kHz
- Generators power 4.2 - 10 kW, frequency 150 - 400 kHz
- Generators power 10-15 kW, frequency 50-150 kHz
- Generators power 30-45 kW, frequency 50-150 kHz
- Generators power 65-135 kW, frequency 50-150 kHz
- Generators power 180-270 kW, frequency 50-150 kHz
- Generators power 20-35-50 kW, frequency 15-45 kHz
- Generators power 75-150 kW, frequency 15-45 kHz
- Generators power 200-500 kW, frequency 15-45 kHz
- Generators power 20-50 kW, frequency 5-15 kHz
- Go to the subcategory
- Induction heating products Denki Kogyo
-
JKZ induction heating generators
- Generators CX, frequency: 50-120kHz, power: 5-25kW
- Generators SWS, frequency: 15-30kHz, power: 25-260kW
- Molding and forging furnaces MFS, frequency: 0,5-10kHz, power: 80-500kW
- Melting metals furnaces MFS, frequency: 0,5-10kHz, power: 70-200kW
- Generators UHT, frequency: 200-400kHz, power: 10-160kW
- Go to the subcategory
- Lamp generators for induction heating
- Induction Heating Products - Himmelwerk
- Go to the subcategory
-
Induction Heating Products Ambrell
- Repairs and modernization
- Peripherals
-
Applications
- Medical Applications with Precision Induction Heating
- Applications for automotive industry
- Soldering
- Brazing
- Aluminum Brazing
- Brazing a magnetic steel cutting tool
- Pin Sealing
- Atmospheric Brazing
- Soldering brass and steel radiator caps
- Carbide Tipping
- Soldering a copper lug and a wire
- Go to the subcategory
- Knowledge base
- View all categories
-
Induction heating generators
-
-
-
Service
-
-
asd
- Service of industrial water coolers and air conditioners
- Machines Repairs and Modernizations
- Repair and Maintenance of Power Electronics, Electronic and Industrial Automation Devices
- HV Power Supplies for Electrostatic Precipitators
- Industrial Printers and Labelling Machines
- Certificates / Entitlements
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
Photos are for informational purposes only. View product specification
please use latin characters
Introduction - Industrial housings
Wstęp - obudowy przemysłowe
Wiele urządzeń elektrycznych/elektronicznych potrzebuje odpowiedniej ochrony mechanicznej, środowiskowej jak i elektromagnetycznej. Do tych wszystkich cech należy dodać ładny, estetyczny wygląd oraz ergonomię. Idealnym rozwiązaniem są wysokiej jakości obudowy wykonane w zależności od aplikacji z aluminium, poliestru wzmacnianego włóknem szklanym, ABS, czy poliwęglanu.
Aby urządzenie elektroniczne działało poprawnie należy przeanalizować i przewidzieć środowisko w jakim ma one pracować. Takie czynniki jak, temperatura , wilgotność, zasolenie czy czynniki chemiczne to tylko niektóre parametry jakie należy uwzględnić przy doborze odpowiednich części.
Jednym z parametrów jakie muszą spełniać obudowy jest stopień ochrony IP.
Klasyfikacja ta jest zgodna z normą EN 60529/DIN40050.
Opis stopnia ochrony
IP XY |
|||||||||||||||||||||||||||||||||||||||
|
|
Dzięki posiadanemu zapleczu warsztatowemu możliwe jest dostosowanie oferowanych obudów do indywidualnych potrzeb Klientów. Modyfikacje mogą polegać na:
|
Ochrona przed innymi czynnikami
Odporny na każde stężenie | Odporny na maks. stężenie | Odporny na temp. do | |||
Ograniczona odporność |
Brak odporności |
Brak danych |
Materiał obudowy | Materiał uszczelki | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Odporność chemiczna na | Aluminium G Al Si 12 | ABS | Poliamid | Poliwęglan | Poliester GFK | Chloropren CR | EPDM | Forpren | Poliuretan | Silikon |
Aceton | ||||||||||
Kwas mrówkowy | 10 | 30 | 10 | |||||||
Amoniak | 10 | 20 | ||||||||
Benzyna | ||||||||||
Benzen | ||||||||||
Płyn hamulcowy | 60 | |||||||||
Butan | ||||||||||
Butanol | ||||||||||
Chlorek wapnia | ||||||||||
Chlorek benzolu | ||||||||||
Olej opałowy | ||||||||||
Kwas octowy | 10 | 10 | 10 | 40 | ||||||
Formaldoksym | 30 | |||||||||
Freon 113 | ||||||||||
Sok owocowy | ||||||||||
Gliceryna | ||||||||||
Paliwo opałowe | ||||||||||
Olej hydrauliczny | ||||||||||
Roztwór wodoro- tlenku potasu |
||||||||||
Chlorek potasu | ||||||||||
Wodorotlenek potasu | ||||||||||
Olej lniany | ||||||||||
Metanol | ||||||||||
Chlorek metylenu | ||||||||||
Kwas aminohydroksy- masłowy |
10 | 10 | ||||||||
Olej mineralny | ||||||||||
Olej silnikowy | ||||||||||
Węglan sodu | ||||||||||
Chlorek sodu | 10 | |||||||||
Wodorotlenek sodu | ||||||||||
Ług sodowy | 10 | 40 | 50 | |||||||
Kwas azotowy | 30 | 10 | 10 | |||||||
Hydrochloric acid | 10 | 10 | 20 | 65 | ||||||
Kwas chlorowodo- rowy |
||||||||||
Dwusiarczek węgla | ||||||||||
Kwas siarkowy | 10 | 30 | 50 | 70 | 50 | 25 | 25 | |||
Mydliny | ||||||||||
Płyn do mycia | ||||||||||
Olej terpentynowy | ||||||||||
Czterochlorek węgla | ||||||||||
Toluol | ||||||||||
Trichloroetylen | ||||||||||
Woda (woda destylowana, rzeczna i morska) | 80 | |||||||||
Ocet | 10 | |||||||||
Ksylol | ||||||||||
Siarczan cynku | ||||||||||
Kwas cytrynowy | 10 | 10 | 10 | 10 |
Charakterystyka materiałów
Obudowy stanowią nieodzowną osłonę wszystkich urządzeń i muszą być stosowane ze względów funkcjonalnych i estetycznych.
Obudowy wytwarza się z:
- aluminium,
- ze stali nierdzewnej,
- z tworzyw sztucznych.
Obudowy aluminiowe charakteryzują się dużą sztywnością i wysoką odpornością na uderzenia, dobrą odpornością na agresję chemiczną, szerokim przedziałem temperatur roboczych, dobrymi właściwościami odprowadzania ciepła, łatwością uziemienia oraz dobrym ekranowaniem przeciw zakłóceniom RFI.
Obudowy ze stali nierdzewnejcechują się: dobrą wytrzymałością mechaniczną, gładkością powierzchni, odpornością na działanie agresywnych czynników otoczenia. Dzięki temu znajdują zastosowanie przy produkcji wyrobów w takich dziedzinach jak:
- przemysł spożywczy i farmaceutyczny,
- przemysł opakowaniowy, także dla produktów spożywczych,
- urządzenia pracujące w środowiskach agresywnych,
- obszary, gdzie wymagana jest kompatybilność elektromagnetyczna (EMC),
- urządzenia, gdzie konieczne jest utrzymanie higieny.
Obudowy z tworzyw sztucznych najczęściej wytwarzane są z poliwęglanu, ABS-u i poliestru zbrojonego włóknem szklanym.
Obudowy z poliwęglanu charakteryzują się odpornością na agresję chemiczną, wysoką odpornością na uderzenia mechaniczne, małym ciężarem właściwym, szerokim zakresem temperatur roboczych, własnością samo gaszenia się, doskonałymi właściwościami izolacyjnymi, dostępnością w wersji przezroczystej, łatwą obróbką skrawaniem. Nie posiadają właściwości ekranowania przed zakłóceniami RFI.
Obudowy z ABS-u (akrylonitryl-butadien-styren) posiadają wiele zalet obudów z poliwęglanu przy jednocześnie niższej cenie. Są one jednak mniej odporne na uderzenia, nie mają odporności na promieniowanie UV i zdolności ekranowania na zakłócenia RFI, nie mają też właściwości samogasnących. Nie zaleca się stosowania ich na zewnątrz budynków.
Obudowy z poliestru zbrojonego włóknem szklanym charakteryzują się sztywną konstrukcją, wysoką odpornością na uderzenia, doskonałą odpornością na korozję i agresję chemiczną, wysoką odpornością na zawilgocenia, dobrymi właściwościami izolacyjnymi, szerokim zakresem temperatur roboczych oraz odpornością na ogień. Nie posiadają jednak możliwości ekranowania przeciw zakłóceniom RFI, są trudne w obróbce skrawaniem; brak możliwości ich wtórnego przerobu.
Zakłócenia elektromagnetyczne
Kompatybilność elektromagnetyczna (EMC) odnośni się do współdziałania pomiędzy różnymi elektrycznymi/elektronicznymi systemami oraz relacji pomiędzy urządzeniami i środowiskiem elektromagnetycznym.
Główne problemy związanie z ochroną elektromagnetyczną, to:
- Emisja przewodzona
- Emisja pola bliskiego
- Emisja pola dalekiego
Ochrona elektromagnetyczna jest to ochrona zarówno przed oddziaływaniem jak i wpływem fal na obiekt. Typowe źródło generuje pole elektryczne (E) i pole magnetyczne (H). W pewnej odległości od źródła, pole E jest równe polu H , wówczas to oddziaływanie nazywane jest falą płaską.
Kiedy fala napotyka na obiekt część energii fali zostaje odbita, część zaabsorbowana oraz część fali, która przeszła przez obiekt osłabiona.
Kiedy impedancja fali jest mała (np. pole magnetyczne), większy odsetek energii jest absorbowany. To jest główny powód dlaczego pole magnetyczne jest trudne do ekranowania.
Przykładowe generowane częstotliwości | |
---|---|
Źródło | Częstotliwość |
Silnik | 10 kHz...100 MHz |
Transformator / prostownik | 10 kHz...100 MHz |
Przełączenia obciążeń indukcyjnych | 50 kHz...10 MHz |
Zgrzewanie punktowe | 10 kHz...50 MHz |
Lampy fluorescencyjne | 100 kHz...3 MHz |
Przekaźniki, styczniki | 10 kHz...200 MHz |
Przesunięcia | 10 kHz...30 MHz |
Komputer | 50 kHz...200 MHz |
Inwerter | 10 kHz...100 MHz |
Indukcja | 0...10 kHz |
Kabel zasilający | 0...10 kHz |
Send an inquiry
Are you interested in this product? Do you need additional information or individual pricing?
Contact us
ASK FOR THE PRODUCT
close
Thank you for sending your message.
We will respond as soon as possible.
ASK FOR THE PRODUCT
close
Wstęp - obudowy przemysłowe
Wiele urządzeń elektrycznych/elektronicznych potrzebuje odpowiedniej ochrony mechanicznej, środowiskowej jak i elektromagnetycznej. Do tych wszystkich cech należy dodać ładny, estetyczny wygląd oraz ergonomię. Idealnym rozwiązaniem są wysokiej jakości obudowy wykonane w zależności od aplikacji z aluminium, poliestru wzmacnianego włóknem szklanym, ABS, czy poliwęglanu.
Aby urządzenie elektroniczne działało poprawnie należy przeanalizować i przewidzieć środowisko w jakim ma one pracować. Takie czynniki jak, temperatura , wilgotność, zasolenie czy czynniki chemiczne to tylko niektóre parametry jakie należy uwzględnić przy doborze odpowiednich części.
Jednym z parametrów jakie muszą spełniać obudowy jest stopień ochrony IP.
Klasyfikacja ta jest zgodna z normą EN 60529/DIN40050.
Opis stopnia ochrony
IP XY |
|||||||||||||||||||||||||||||||||||||||
|
|
Dzięki posiadanemu zapleczu warsztatowemu możliwe jest dostosowanie oferowanych obudów do indywidualnych potrzeb Klientów. Modyfikacje mogą polegać na:
|
Ochrona przed innymi czynnikami
Odporny na każde stężenie | Odporny na maks. stężenie | Odporny na temp. do | |||
Ograniczona odporność |
Brak odporności |
Brak danych |
Materiał obudowy | Materiał uszczelki | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Odporność chemiczna na | Aluminium G Al Si 12 | ABS | Poliamid | Poliwęglan | Poliester GFK | Chloropren CR | EPDM | Forpren | Poliuretan | Silikon |
Aceton | ||||||||||
Kwas mrówkowy | 10 | 30 | 10 | |||||||
Amoniak | 10 | 20 | ||||||||
Benzyna | ||||||||||
Benzen | ||||||||||
Płyn hamulcowy | 60 | |||||||||
Butan | ||||||||||
Butanol | ||||||||||
Chlorek wapnia | ||||||||||
Chlorek benzolu | ||||||||||
Olej opałowy | ||||||||||
Kwas octowy | 10 | 10 | 10 | 40 | ||||||
Formaldoksym | 30 | |||||||||
Freon 113 | ||||||||||
Sok owocowy | ||||||||||
Gliceryna | ||||||||||
Paliwo opałowe | ||||||||||
Olej hydrauliczny | ||||||||||
Roztwór wodoro- tlenku potasu |
||||||||||
Chlorek potasu | ||||||||||
Wodorotlenek potasu | ||||||||||
Olej lniany | ||||||||||
Metanol | ||||||||||
Chlorek metylenu | ||||||||||
Kwas aminohydroksy- masłowy |
10 | 10 | ||||||||
Olej mineralny | ||||||||||
Olej silnikowy | ||||||||||
Węglan sodu | ||||||||||
Chlorek sodu | 10 | |||||||||
Wodorotlenek sodu | ||||||||||
Ług sodowy | 10 | 40 | 50 | |||||||
Kwas azotowy | 30 | 10 | 10 | |||||||
Hydrochloric acid | 10 | 10 | 20 | 65 | ||||||
Kwas chlorowodo- rowy |
||||||||||
Dwusiarczek węgla | ||||||||||
Kwas siarkowy | 10 | 30 | 50 | 70 | 50 | 25 | 25 | |||
Mydliny | ||||||||||
Płyn do mycia | ||||||||||
Olej terpentynowy | ||||||||||
Czterochlorek węgla | ||||||||||
Toluol | ||||||||||
Trichloroetylen | ||||||||||
Woda (woda destylowana, rzeczna i morska) | 80 | |||||||||
Ocet | 10 | |||||||||
Ksylol | ||||||||||
Siarczan cynku | ||||||||||
Kwas cytrynowy | 10 | 10 | 10 | 10 |
Charakterystyka materiałów
Obudowy stanowią nieodzowną osłonę wszystkich urządzeń i muszą być stosowane ze względów funkcjonalnych i estetycznych.
Obudowy wytwarza się z:
- aluminium,
- ze stali nierdzewnej,
- z tworzyw sztucznych.
Obudowy aluminiowe charakteryzują się dużą sztywnością i wysoką odpornością na uderzenia, dobrą odpornością na agresję chemiczną, szerokim przedziałem temperatur roboczych, dobrymi właściwościami odprowadzania ciepła, łatwością uziemienia oraz dobrym ekranowaniem przeciw zakłóceniom RFI.
Obudowy ze stali nierdzewnejcechują się: dobrą wytrzymałością mechaniczną, gładkością powierzchni, odpornością na działanie agresywnych czynników otoczenia. Dzięki temu znajdują zastosowanie przy produkcji wyrobów w takich dziedzinach jak:
- przemysł spożywczy i farmaceutyczny,
- przemysł opakowaniowy, także dla produktów spożywczych,
- urządzenia pracujące w środowiskach agresywnych,
- obszary, gdzie wymagana jest kompatybilność elektromagnetyczna (EMC),
- urządzenia, gdzie konieczne jest utrzymanie higieny.
Obudowy z tworzyw sztucznych najczęściej wytwarzane są z poliwęglanu, ABS-u i poliestru zbrojonego włóknem szklanym.
Obudowy z poliwęglanu charakteryzują się odpornością na agresję chemiczną, wysoką odpornością na uderzenia mechaniczne, małym ciężarem właściwym, szerokim zakresem temperatur roboczych, własnością samo gaszenia się, doskonałymi właściwościami izolacyjnymi, dostępnością w wersji przezroczystej, łatwą obróbką skrawaniem. Nie posiadają właściwości ekranowania przed zakłóceniami RFI.
Obudowy z ABS-u (akrylonitryl-butadien-styren) posiadają wiele zalet obudów z poliwęglanu przy jednocześnie niższej cenie. Są one jednak mniej odporne na uderzenia, nie mają odporności na promieniowanie UV i zdolności ekranowania na zakłócenia RFI, nie mają też właściwości samogasnących. Nie zaleca się stosowania ich na zewnątrz budynków.
Obudowy z poliestru zbrojonego włóknem szklanym charakteryzują się sztywną konstrukcją, wysoką odpornością na uderzenia, doskonałą odpornością na korozję i agresję chemiczną, wysoką odpornością na zawilgocenia, dobrymi właściwościami izolacyjnymi, szerokim zakresem temperatur roboczych oraz odpornością na ogień. Nie posiadają jednak możliwości ekranowania przeciw zakłóceniom RFI, są trudne w obróbce skrawaniem; brak możliwości ich wtórnego przerobu.
Zakłócenia elektromagnetyczne
Kompatybilność elektromagnetyczna (EMC) odnośni się do współdziałania pomiędzy różnymi elektrycznymi/elektronicznymi systemami oraz relacji pomiędzy urządzeniami i środowiskiem elektromagnetycznym.
Główne problemy związanie z ochroną elektromagnetyczną, to:
- Emisja przewodzona
- Emisja pola bliskiego
- Emisja pola dalekiego
Ochrona elektromagnetyczna jest to ochrona zarówno przed oddziaływaniem jak i wpływem fal na obiekt. Typowe źródło generuje pole elektryczne (E) i pole magnetyczne (H). W pewnej odległości od źródła, pole E jest równe polu H , wówczas to oddziaływanie nazywane jest falą płaską.
Kiedy fala napotyka na obiekt część energii fali zostaje odbita, część zaabsorbowana oraz część fali, która przeszła przez obiekt osłabiona.
Kiedy impedancja fali jest mała (np. pole magnetyczne), większy odsetek energii jest absorbowany. To jest główny powód dlaczego pole magnetyczne jest trudne do ekranowania.
Przykładowe generowane częstotliwości | |
---|---|
Źródło | Częstotliwość |
Silnik | 10 kHz...100 MHz |
Transformator / prostownik | 10 kHz...100 MHz |
Przełączenia obciążeń indukcyjnych | 50 kHz...10 MHz |
Zgrzewanie punktowe | 10 kHz...50 MHz |
Lampy fluorescencyjne | 100 kHz...3 MHz |
Przekaźniki, styczniki | 10 kHz...200 MHz |
Przesunięcia | 10 kHz...30 MHz |
Komputer | 50 kHz...200 MHz |
Inwerter | 10 kHz...100 MHz |
Indukcja | 0...10 kHz |
Kabel zasilający | 0...10 kHz |
Comments (0)
Your review appreciation cannot be sent
Report comment
Are you sure that you want to report this comment?
Report sent
Your report has been submitted and will be considered by a moderator.
Your report cannot be sent
Write your review
Review sent
Your comment has been submitted and will be available once approved by a moderator.
Your review cannot be sent