-
BackX
-
Components
-
-
Category
-
Semiconductors
- Diodes
- Thyristors
-
Electro-insulated Modules
- Electro-insulated Modules | VISHAY (IR)
- Electro-insulated Modules | INFINEON (EUPEC)
- Electro-insulated Modules | Semikron
- Electro-insulated Modules | POWEREX
- Electro-insulated Modules | IXYS
- Electro-insulated Modules | POSEICO
- Electro-insulated Modules | ABB
- Electro-insulated Modules | TECHSEM
- Go to the subcategory
- Bridge Rectifiers
-
Transistors
- Transistors | GeneSiC
- SiC MOSFET Modules | Mitsubishi
- SiC MOSFET Modules | STARPOWER
- Module SiC MOSFET ABB’s
- IGBT Modules | MITSUBISHI
- Transistor Modules | MITSUBISHI
- MOSFET Modules | MITSUBISHI
- Transistor Modules | ABB
- IGBT Modules | POWEREX
- IGBT Modules | INFINEON (EUPEC)
- Silicon Carbide (SiC) semiconductor elements
- Go to the subcategory
- Gate Drivers
- Power Blocks
- Go to the subcategory
-
Electrical Transducers
-
Current Transducers | LEM
- Closed-Loop Current Transducers (C/L)
- Open-Loop Current Transducers (O/L)
- Current Transducers supplied with unipolar voltage
- 'Eta' Current Transducers
- Current Transducers - LF xx10 Series
- Current Transducers - LH Series
- Current Transducer - HOYL and HOYS Series
- Current Transducers - GO–SME & GO–SMS Series
- AUTOMOTIVE current transducers
- Go to the subcategory
-
Voltage Transducers | LEM
- Voltage Transducers - LV Series
- Voltage Transducers - DVL Series
- Precision Voltage Transducers with double magnetic core - CV Series
- Voltage Transducer for Traction - DV 4200/SP4
- Voltage Transducers - DVM Series
- Voltage Transducer - DVC 1000-P
- Voltage Transducers - DVC 1000 Series
- Go to the subcategory
- Precision Current Transducers | LEM
- Go to the subcategory
-
Current Transducers | LEM
-
Passive components (capacitors, resistors, fuses, filters)
- Resistors
-
Fuses
- Miniature Fuses for electronic circuits - ABC & AGC Series
- Tubular Fast-acting Fuses
- Time-delay Fuse Links with GL/GG & AM characteristics
- Ultrafast Fuse Links
- Fast-acting Fuses (British & American standard)
- Fast-acting Fuses (European standard)
- Traction Fuses
- High-voltage Fuse Links
- Go to the subcategory
- Capacitors
- EMI Filters
- Supercapacitors
- Power surge protection
- Go to the subcategory
-
Relays and Contactors
- Relays and Contactors - Theory
- 3-Phase AC Semiconductor Relays
- DC Semiconductor Relays
- Controllers, Control Systems and Accessories
- Soft Starters and Reversible Relays
- Electromechanical Relays
- Contactors
- Rotary Switches
-
Single-Phase AC Semiconductor Relays
- AC ONE PHASE RELAYS 1 series| D2425 | D2450
- One phase semiconductor AC relays CWA and CWD series
- One phase semiconductor AC relays CMRA and CMRD series
- One phase semiconductor AC relays - PS series
- Double and quadruple semiconductor AC relays - D24 D, TD24 Q, H12D48 D series
- One phase semiconductor relays - gn series
- Ckr series single phase solid state relays
- One phase AC semiconductor relays for DIN bus - ERDA I ERAA series
- 150A AC single phase relays
- Rail Mountable Solid State Relays With Integrated Heat Sink - ENDA, ERDA1 / ERAA1 series
- Go to the subcategory
- Single-Phase AC Semiconductor Relays for PCBs
- Interface Relays
- Go to the subcategory
- Cores and Other Inductive Components
- Heatsinks, Varistors, Thermal Protection
- Fans
- Air Conditioning, Accessories for Electrical Cabinets, Coolers
-
Batteries, Chargers, Buffer Power Supplies and Inverters
- Batteries, Chargers - Theoretical Description
- Modular Li-ion Battery Building Blocks, Custom Batteries, BMS
- Batteries
- Battery Chargers and Accessories
- Uninterruptible Power Supply and Buffer Power Supplies
- Inverters and Photovoltaic Equipments
- Energy storage
- Fuel cells
- Lithium-ion batteries
- Go to the subcategory
-
Automatics
- Futaba Drone Parts
- Limit Switches, Microswitches
- Sensors, Transducers
-
Infrared Thermometers (Pyrometers)
- IR-TE Series - Water-proof Palm-sized Radiation Thermometer
- IR-TA Series - Handheld Type Radiation Thermometer
- IR-H Series - Handheld Type Radiation Thermometer
- IR-BA Series - High-speed Compact Radiation Thermometer
- IR-FA Series - Fiber Optic Radiation Thermometer
- IR-BZ Series - Compact Infrared Thermometers
- Go to the subcategory
- Counters, Time Relays, Panel Meters
- Industrial Protection Devices
- Light and Sound Signalling
- Thermographic Camera
- LED Displays
- Control Equipments
-
Recorders
- Hybrid Recorders - AL3000 Series | CHINO
- Graphic Recorder - KR2000 Series | CHINO
- Ubiquitous Recorders - KR5000 Series | CHINO
- Palm-sized Temperature/Humidity Meters - HN-CH Series | CHINO
- Consumables for Recorders
- 71VR1 - Compact Paperless Recorder | M-SYSTEM
- Graphic Recorder - KR3000 Series | CHINO
- PC Recorders - R1M Series | M-SYSTEM
- PC Recorders - R2M Series | M-SYSTEM
- PC Recorders - RZMS Series | M-SYSTEM
- PC Recorders - RZUS Series | M-SYSTEM
- Go to the subcategory
- Go to the subcategory
-
Cables, Litz wires, Conduits, Flexible connections
- Wires
- Litz wires
- Cables for extreme applications
- Sleevings
-
Braids
- Flat Braids
- Round Braids
- Very Flexible Flat Braids
- Very Flexible Round Braids
- Cylindrical Cooper Braids
- Cylindrical Cooper Braids and Sleevings
- Flexible Earthing Connections
- Galvanized and Stainless Steel Cylindrical Braids
- PCV Insulated Copper Braids (temp. up to 85C)
- Flat Aluminium Braids
- Junction Set - Braids and Tubes
- Go to the subcategory
- Traction Equipment
- Cable Terminals
- Flexible Insulated Busbars
- Flexible Multilayer Busbars
- Cable Duct Systems
- Hoses
- Go to the subcategory
- View all categories
-
Semiconductors
-
-
- Suppliers
-
Applications
- CNC Machine Tools
- DC and AC Drives (Inverters)
- Energetics
- Energy bank
- Equipment and Components for Hazardous Areas [Ex]
- Equipment for Distribution, Control and Telecommunications Cabinets
- HVAC Automation
- Induction Heating
- Industrial Automation
- Industrial Protective Devices
- Machines for Drying and Wood Processing
- Machines for Thermoforming Plastics
- Mining, Metallurgy and Foundry
- Motors and Transformers
- Power Supplies (UPS) and Rectifier Systems
- Printing
- Temperature Measurement and Regulation
- Test and Laboratory Measurements
- Tram and Railway Traction
- Welding Machines
-
Assembly
-
-
Montaż urządzeń
- Assembly of equipment on request
- Designing and Assembling of Busbar Cabinets, Switching Cabinets, Power Cabinets
- Power systems installation
- Components
- Machines built for order
- R&D research and development work
-
Industrial Testers
- Tester for diodes and thyristors measurement
- Thermal and motor circuit breakers testing stand
- Varistors and surge protectors testers
- Car fuses testing stand
- Tester for the power diode and thyristor reverse recovery charge Qrr measurement
- Rotor tester FD series
- Circuit breakers tester
- Tester for calibrating relays
- Video inspection tester for gas spring piston rods
- High-current thyristor switch
- Mesh ripping tester
- Go to the subcategory
- View all categories
-
-
-
Inductors
-
-
Modernizacja induktorów
- Repair of used inductors
- Modernization of inductors
-
Production of new inductors
- Inductors for crankshaft hardening
- Hardening of band saw teeth
- Inductors for heating elements before gluing
- Hardening of raceways of automotive wheel hub bearings
- Hardening of the drive transmission components
- Hardening of stepped shafts
- Heating in contraction joints
- Induction for scanning hardening
- Soft soldering
- Billet heaters
- Go to the subcategory
- Knowledge base
- View all categories
-
-
-
Induction devices
-
-
Urządzenia indukcyjne
-
Induction heating generators
-
Induction Heating Products Ambrell
- Generators power 500 W, frequency 150 - 400 kHz
- Generators power 1.2 - 2.4 kW, frequency 150 - 400 kHz
- Generators power 4.2 - 10 kW, frequency 150 - 400 kHz
- Generators power 10-15 kW, frequency 50-150 kHz
- Generators power 30-45 kW, frequency 50-150 kHz
- Generators power 65-135 kW, frequency 50-150 kHz
- Generators power 180-270 kW, frequency 50-150 kHz
- Generators power 20-35-50 kW, frequency 15-45 kHz
- Generators power 75-150 kW, frequency 15-45 kHz
- Generators power 200-500 kW, frequency 15-45 kHz
- Generators power 20-50 kW, frequency 5-15 kHz
- Go to the subcategory
- Induction heating products Denki Kogyo
-
JKZ induction heating generators
- Generators CX, frequency: 50-120kHz, power: 5-25kW
- Generators SWS, frequency: 15-30kHz, power: 25-260kW
- Molding and forging furnaces MFS, frequency: 0,5-10kHz, power: 80-500kW
- Melting metals furnaces MFS, frequency: 0,5-10kHz, power: 70-200kW
- Generators UHT, frequency: 200-400kHz, power: 10-160kW
- Go to the subcategory
- Lamp generators for induction heating
- Induction Heating Products - Himmelwerk
- Go to the subcategory
-
Induction Heating Products Ambrell
- Repairs and modernization
- Peripherals
-
Applications
- Medical Applications with Precision Induction Heating
- Applications for automotive industry
- Soldering
- Brazing
- Aluminum Brazing
- Brazing a magnetic steel cutting tool
- Pin Sealing
- Atmospheric Brazing
- Soldering brass and steel radiator caps
- Carbide Tipping
- Soldering a copper lug and a wire
- Go to the subcategory
- Knowledge base
- View all categories
-
Induction heating generators
-
-
-
Service
-
-
asd
- Service of industrial water coolers and air conditioners
- Machines Repairs and Modernizations
- Repair and Maintenance of Power Electronics, Electronic and Industrial Automation Devices
- HV Power Supplies for Electrostatic Precipitators
- Industrial Printers and Labelling Machines
- Certificates / Entitlements
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 4 of 8
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 4 of 8
The issue of electromagnetic emission and immunity is a key aspect of Electromagnetic Compatibility (EMC).
Electromagnetic emission refers to the process in which electronic devices generate and emit unwanted electromagnetic signals into the environment. On the other hand, electromagnetic immunity refers to the impact of electromagnetic disturbances from external sources on the operation of electronic devices.
Electromagnetic emission can cause interference in nearby devices if they are not adequately resilient to these signals. Emission can occur due to various factors such as circuit switching, electrical impulses, oscillations, or inadequate shielding. It is essential for electronic devices to be designed with emission control in mind by applying appropriate design, shielding, and filtering techniques, as well as complying with EMC standards and regulations.
Electromagnetic immunity concerns the susceptibility of electronic devices to disturbances if they are not adequately protected from electromagnetic emission from other devices or the environment. Electromagnetic disturbances can affect the operation of electronic circuits, causing data transmission errors, operational instability, signal loss, or system failures. Therefore, conducting appropriate EMC tests to assess the resilience of devices to disturbances and adjusting the design to minimize their impact is crucial.
Managing electromagnetic emission and immunity is a significant aspect in the field of EMC. Proper design, testing, and application of EMC techniques allow for minimizing electromagnetic emission and reducing the impact of disturbances on electronic devices. Device owners should also ensure proper separation and shielding of devices to minimize the influence of external disturbances. All of these efforts contribute to ensuring reliable, safe, and efficient operation of electronic devices in various environments and applications.
Shielding and Electromagnetic Shielding are key techniques used to minimize electromagnetic disturbances in electronic devices.
Shielding refers to physically isolating electronic components or entire devices from the surrounding environment using appropriate shielding materials. Electromagnetic shielding aims to prevent the emission of unwanted electromagnetic signals into the environment and protect against external disturbances.
In practice, shielding involves using materials with high electromagnetic conductivity, such as metal enclosures, Faraday cages, or shielding foils. These materials have the ability to reflect or absorb electromagnetic signals, preventing their penetration outside or inside the device. Shielding can be applied at various levels, from the entire device enclosure to individual components, such as circuit boards, cables, or integrated circuits.
Electromagnetic shielding has several benefits. Firstly, it protects devices from undesired electromagnetic disturbances from the outside. It also shields the environment from electromagnetic emission generated by the devices, which is particularly important for medical devices or navigational systems. Additionally, shielding helps to comply with EMC standards and regulations regarding electromagnetic emission.
It is essential to design shielding properly to avoid gaps or openings that could allow electromagnetic signals to penetrate. Proper connection of shielding elements is also crucial to ensure continuity and effectiveness of shielding. Additionally, consideration of airflow, cooling, and other design aspects is necessary to ensure proper device operation.
Electromagnetic shielding is one of many techniques used to minimize electromagnetic disturbances. In combination with other techniques such as filtering, damping, or proper cable layout, shielding contributes to providing high-quality signals, device reliability, and compliance with EMC requirements. It is worth emphasizing that shielding should be considered in the early stages of device design to guarantee its effectiveness and efficiency in eliminating electromagnetic disturbances.
Absorption and Damping of Electromagnetic Disturbances are key techniques used to minimize the impact of disturbances on electronic devices.
These techniques aim to reduce the emission and immunity of unwanted electromagnetic signals, contributing to ensuring reliable device operation. Here are a few examples of electromagnetic absorption and damping techniques:
- Absorbing Materials: The use of absorbing materials aims to absorb and convert electromagnetic energy into other forms of energy, such as heat. These materials have the ability to absorb electromagnetic signals that are unwanted or generate disturbances. Examples of absorbing materials include ferrite magnetic materials, carbon foam, or conductive polyurethane foams.
- Electromagnetic Shielding: Electromagnetic shielding, which has been described earlier, is also a technique for damping electromagnetic disturbances. By using shielding materials such as metal enclosures or shielding foils, electromagnetic disturbances are reflected or absorbed, preventing their penetration outside or inside the device. This effectively reduces the impact of disturbances on device operation.
- EMC Filters: EMC filters are used to reduce unwanted electromagnetic signals. These filters are placed in electronic circuits and serve to filter out electromagnetic disturbances in specific frequency ranges. Filters can be passive (resistive, capacitive, inductive) or active (using integrated circuits). Their task is to eliminate disturbances or prevent them from penetrating other parts of the circuit.
- Circuit Design: Proper electronic circuit design can also help in damping electromagnetic disturbances. Consideration should be given to the arrangement of components, conductors, and the minimization of the length of signal paths to reduce inductive and capacitive effects that can generate disturbances. Proper use of shielding, grounding, and cable layout in accordance with EMC principles is also crucial for damping disturbances.
Absorption and damping of electromagnetic disturbances are key techniques in the field of EMC. The use of appropriate materials, filters, and design techniques allows for the reduction of electromagnetic disturbances, improvement of device reliability, and compliance with EMC requirements. The application of these techniques is particularly important for devices that are susceptible to disturbances or operate in environments where strong electromagnetic fields are present.
Designing and laying out circuits are crucial elements in ensuring Electromagnetic Compatibility (EMC) of electronic devices.
Proper circuit design and layout aim to minimize electromagnetic interference emissions and ensure immunity to external interferences. Here are some key aspects of circuit design and layout related to EMC:
Miniaturization of Signal Traces: Long signal traces act as antennas that can capture and emit electromagnetic interference. Therefore, it is essential to minimize the length of signal traces, especially those carrying high-frequency signals. Shortening the signal traces reduces potential electromagnetic fields and minimizes the risk of emissions of interference.
Proper Component Placement: Circuit design should consider the appropriate placement of components to avoid inductive and capacitive effects that may generate interference. It is essential to avoid placing components that generate or are sensitive to electromagnetic interference in close proximity. Also, placing components in accordance with EMC principles can help minimize emissions and susceptibility to interference.
Proper Grounding and Shielding: Grounding is a critical aspect of circuit design for ensuring EMC. Proper grounding ensures the proper flow of currents, minimizes potential differences, and protects against electromagnetic interferences. Additionally, the use of electromagnetic shielding, such as metal enclosures or shielding foils, can effectively limit the emission and ingress of electromagnetic interference.
Filtering and Damping: Incorporating appropriate filters and damping elements in electronic circuits can help eliminate unwanted electromagnetic interferences. EMC filters are used to filter out interferences within specific frequency ranges, while damping elements can reduce the impact of interferences on circuit operations. The selection and placement of these elements should be tailored to the specific requirements of the application.
Proper circuit design and layout to ensure Electromagnetic Compatibility are incredibly important. Considering the above aspects allows for the minimization of electromagnetic interference emissions, ensures the reliability of device operation, and compliance with EMC standards. It is important to remember that circuit design and layout should be carried out in the early stages of the design process to effectively address EMC requirements and avoid costly revisions later on.
Leave a comment