Debes estar logueado
-
moreX
-
Componentes
-
-
Category
-
Semiconductores
- Diodos
- Tiristores
-
Módulos con aislamiento eléctrico
- Módulos con aislamiento eléctrico | VISHAY (IR)
- Módulos con aislamiento eléctrico | INFINEON (EUPEC)
- Módulos con aislamiento eléctrico | Semikron
- Módulos con aislamiento eléctrico | POWEREX
- Módulos con aislamiento eléctrico | IXYS
- Módulos con aislamiento eléctrico | POSEICO
- Módulos con aislamiento eléctrico | ABB
- Módulos con aislamiento eléctrico | TECHSEM
- Go to the subcategory
- Rectificadores de puente
-
Transistores
- Transistores | GeneSiC
- Módulos SiC MOSFET | Mitsubishi
- Módulos SiC MOSFET | STARPOWER
- Módulos ABB SiC MOSFET
- Módulos IGBT | MITSUBISHI
- Módulos de transistores | MITSUBISHI
- Módulos MOSFET | MITSUBISHI
- Módulos de transistores | ABB
- Módulos IGBT | POWEREX
- Módulos IGBT | INFINEON (EUPEC)
- Elementos semiconductores de carburo de silicio (SiC)
- Go to the subcategory
- Controladores de puerta
- Bloques de energía
- Go to the subcategory
-
Convertidores de corriente y tensión LEM
-
Transductores de corriente | LEM
- Transductor de corriente con bucle de retroalimentación cerrado (C / L)
- Transductor de corriente con bucle de retroalimentación abierto (O / L)
- Transductor de corriente alimentado por voltaje unipolar
- Transductores en tecnología Eta
- Transductores de corriente de alta precisión serie LF xx10
- Transductores de corriente de la serie LH
- HOYS y HOYL: dedicados para el montaje directamente en un riel conductor
- Convertidores de corriente en la tecnología SMD de las series GO-SME y GO-SMS
- Transductores de corriente AUTOMOCIÓN
- Go to the subcategory
-
Transductores de voltaje | LEM
- Convertidores de voltaje de la serie LV
- Convertidores de voltaje de la serie DVS
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de voltaje de la serie DVM
- Transductor de voltaje - DVC 1000-P
- Transductores de voltaje - Serie DVC 1000
- Go to the subcategory
- Transductores de corriente de precisión | LEM
- Go to the subcategory
-
Transductores de corriente | LEM
-
Componentes pasivos (condensadores, resistencias, fusibles, filtros)
- Resistencias
-
Fusibles
- Fusibles miniatura para circuitos electrónicos, serie ABC y AGC
- Fusibles tubulares de acción rápida
- Eslabones fusibles de retardo de tiempo con características GL / GG y AM
- Eslabones fusibles ultrarrápidos
- Fusibles de acción rápida (estándar británico y estadounidense)
- Fusibles de acción rápida (estándar europeo)
- Fusibles de tracción
- Eslabones fusibles de alto voltaje
- Go to the subcategory
-
Condensadores
- Condensadores de motor
- Condensadores electrolíticos
- Condensadores de película
- Condensadores de potencia
- Condensadores para circuitos de CC
- Condensadores de corrección del factor de potencia
- Condensadores de alto voltaje
- Condensadores de calentamiento por inducción
- Condensadores de almacenamiento de energía y pulsos
- Condensadores de ENLACE CC
- Condensadores para circuitos AC/DC
- Go to the subcategory
- Filtros EMI
- Supercondensadores
-
Protección contra sobretensiones
- Protección contra sobretensiones para aplicaciones coaxiales
- Protección contra sobretensiones para sistemas de videovigilancia
- Protección contra sobretensiones para cableado de potencia
- Pararrayos para LED
- Descargadores de sobretensiones para energía fotovoltaica
- Protección del sistema de pesaje
- Protección contra sobretensiones para Fieldbus
- Go to the subcategory
- Go to the subcategory
-
Relés y contactores
- Teoría de relés y contactores
- Relés semiconductores de CA trifásicos
- Relés semiconductores de CA trifásicos
- Reguladores, controles y accesorios
- Arranques suaves y contactores de inversión
- Relés electromecánicos
- Contactores
- Interruptores giratorios
-
Relés semiconductores de CA monofásicos
- Relés semiconductores CA monofásicos, serie 1 | D2425 | D2450
- Relés semiconductores CA monofásicos, series CWA y CWD
- Relés semiconductores CA monofásicos de las series CMRA y CMRD
- Relés semiconductores de CA monofásicos, serie PS
- Relés semiconductores de CA dobles y cuádruples, serie D24 D, TD24 Q, H12D48 D
- Relés de estado sólido monofásicos, serie gn
- Relés semiconductores de ca monofásicos, serie ckr
- Relés AC monofásicos SERIE ERDA Y ERAA para carril DIN
- Relés AC monofásicos para corriente 150A
- Relés dobles de estado sólido integrados con disipador de calor para carril DIN
- Go to the subcategory
- Relés semiconductores CA monofásicos para PCB
- Relés de interfaz
- Go to the subcategory
- Núcleos y otros componentes inductivos
- Radiadores, varistores, protecciones térmicas
- Aficionados
- Aire Acondicionado, Accesorios para Armarios Eléctricos, Neveras
-
Baterías, cargadores, fuentes de alimentación de búfer e inversores
- Baterías, cargadores - descripción teórica
- Baterías de iones de litio. Baterías personalizadas. Sistema de gestión de batería (BMS)
- Pilas
- Cargadores de baterías y accesorios
- Fuente de alimentación de respaldo de UPS y fuentes de alimentación de búfer
- Convertidores y accesorios para fotovoltaica
- Almacen de energia
- Celdas de combustible
- Baterías de iones de litio
- Go to the subcategory
-
Automaticas
- Futaba Drone Parts
- Finales de carrera, microinterruptores
- Sensores, transductores
- Pirometría
- Contadores, temporizadores, medidores de panel
- Dispositivos de protección industrial
- Señalización luminosa y sonora
- Cámara termográfica
- Pantallas LED
- Botones e interruptores
-
Grabadores
- Grabadora AL3000
- Grabadora KR2000
- Grabadora KR5000
- Medidor HN-CH con función de registro de humedad y temperatura
- Consumibles para registradores
- Grabadora 71VR1
- Grabadora KR 3000
- Grabadores de PC de la serie R1M
- Grabadores de PC de la serie R2M
- Grabador de PC, 12 entradas aisladas - RZMS-U9
- Grabador de PC, USB, 12 entradas aisladas - RZUS
- Go to the subcategory
- Go to the subcategory
-
Cables, alambres Litz, conductos, conexiones flexibles
- alambres
- cables Litz
-
Cables para aplicaciones especiales
- Los cables de extensión y compensación
- Cables para termopares
- Los cables de conexión a PT czyjnków
- Multicore cables temp. -60 ° C a + 1400 ° C
- cables de media tensión SILICOUL
- ignición alambres
- Los cables calefactores
- temp núcleo único. -60 ° C a + 450 ° C
- conductores de trenes
- El calentamiento de los cables en el Ex
- Go to the subcategory
- camisas
-
trenzas
- trenzas planas
- trenzas ronda
- trenza muy flexible - plana
- trenza muy flexible - Ronda
- Copper cilíndrico trenzado
- Copper protector de la trenza y cilíndrica
- cintas de conexión flexibles
- Trenzas cilíndrico galvanizado y acero inoxidable
- Aislamiento de PVC trenzas de cobre - Temperatura 85 ° C
- aluminio trenzado plano
- Kit de conexión - trenzas y tubos
- Go to the subcategory
- Accesorios para la tracción
- Terminales de cable
- barras flexibles aisladas
- carril flexible multicapa
- sistemas de gestión de cables
- Conductos, tuberías
- Go to the subcategory
- View all categories
-
Semiconductores
-
-
- Suppliers
-
Applications
- Accionamientos de CA y CC (inversores)
- Automatización HVAC
- Automatización industrial
- Automatización industrial
- Calentamiento por inducción
- Componentes para atmósferas potencialmente explosivas (EX)
- Dispositivos de protección industrial
- Energy bank
- Equipos para Armarios de Distribución, Control y Telecomunicaciones
- Fuentes de alimentación (UPS) y sistemas rectificadores
- Impresión
- Máquinas de soldar y máquinas de soldar
- Máquinas herramientas CNC
- Máquinas para secar y procesar madera
- Máquinas para termoformado de plásticos
- Medición y regulación de temperatura
- Medición y regulación de temperatura
- Minería, metalurgia y fundación
- Motores y transformadores
- Tracción de tranvía y ferrocarril
-
Instalación
-
-
Montaż urządzeń
- Instalación de armarios
- Diseño y montaje de armarios
- Instalación de sistemas de energía
- Componentes
- Máquinas construidas por encargo
- Trabajo de investigación y desarrollo de I+D.
-
Probadores industriales
- Probadores de semiconductores de potencia
- Comprobadores de aparatos eléctricos
- Comprobadores de varistores y descargadores de sobretensiones
- Probador de fusibles automotriz
- Probador qrr para medir cargas transitorias en tiristores y diodos de potencia
- Comprobador de rotores de interruptores automáticos de la serie FD
- Comprobador de auditoría de dispositivos de corriente residual
- Probador de calibración de relés
- Probador de pruebas visuales de vástagos de resortes de gas
- Interruptor de tiristor de alta corriente
- Probador de rotura de malla
- Go to the subcategory
- View all categories
-
-
-
Inductores
-
-
Modernizacja induktorów
- Reparación de inductores usados
- Modernización de inductores
-
Producción de nuevos inductores.
- Endurecimiento de cigüeñales
- Endurecimiento de los dientes de la sierra de cinta
- Calentamiento de elementos antes de pegar
- Endurecimiento de pistas de rodadura de cojinetes de cubo de rueda de automoción
- Endurecimiento de los componentes de la transmisión motriz
- Endurecimiento de ejes escalonados
- Calentamiento en juntas de contracción
- Endurecimiento de escaneo
- Soldadura blanda
- Calentadores de palanquilla
- Go to the subcategory
- Base de conocimientos
- View all categories
-
-
-
Dispositivos de inducción
-
-
Urządzenia indukcyjne
-
Generadores de calentamiento por inducción
-
Generadores de calentamiento por inducción Ambrell
- Generadores: potencia 500 W, frecuencia 150-400 kHz
- Generadores: Potencia 1,2 - 2,4 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 4.2 - 10 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 10-15 kW, frecuencia 50-150 kHz
- Generadores: potencia 30-45 kW, frecuencia 50-150 kHz
- Generadores: potencia 65-135 kW, frecuencia 50-150 kHz
- Generadores: potencia 180-270 kW, frecuencia 50-150 kHz
- Generadores: potencia 20-35-50 kW, frecuencia 15-45 kHz
- Generadores: cнага 75-150 кВ, фреквенција 15-45 кХз
- Generadores: potencia 200-500 kW, frecuencia 15-45 kHz
- Generadores: potencia 20-50 kW, frecuencia 5-15 kHz
- Go to the subcategory
- Generadores de calentamiento por inducción Denki Kogyo
-
Generadores de calentamiento por inducción JKZ
- Generadores de la serie CX, frecuencia: 50-120kHz, potencia: 5-25kW
- Generadores de la serie SWS, frecuencia: 15-30kHz, potencia: 25-260kW
- Generadores (hornos) para conformar y forjar serie MFS, frecuencia: 0.5-10kHz, potencia: 80-500kW
- Hornos de fusión MFS, frecuencia: 0,5-10 kHz, potencia: 70-200 kW
- Generadores de la serie UHT, frecuencia: 200-400kHz, potencia: 10-160kW
- Go to the subcategory
- Generadores de lámparas para calentamiento por inducción
- Generadores de calentamiento por inducción Himmelwerk
- Go to the subcategory
-
Generadores de calentamiento por inducción Ambrell
- Reparaciones y modernización
- Periféricos
-
Aplicaciones
- Aplicaciones médicas
- Aplicaciones para la industria automotriz
- Soldadura blanda
- Soldadura
- Soldadura fuerte de aluminio
- Soldadura de herramientas magnéticas de acero inoxidable
- Soldadura de precisión
- Soldadura fuerte en atmósfera protectora
- Soldadura de tapas de disipadores de calor de latón y acero
- Soldadura de carburos sinterizados
- Soldar la punta de cobre y el cable
- Go to the subcategory
- Base de conocimientos
- View all categories
-
Generadores de calentamiento por inducción
-
-
-
Servicio
-
-
asd
- Servicio de enfriadores de agua y aires acondicionados industriales
- Reparaciones y modernización de máquinas
-
Reparaciones de electrónica de potencia, electrónica y dispositivos de automatización
- Servicio de inversores, servoaccionamientos y reguladores DC
- Servicio de inversores fotovoltaicos
- Servicio de rectificadores de galvanoplastia FLEXKRAFT
- Oferta de reparación de equipos
- Lista de dispositivos reparados
- Reparación de máquinas de laminado de billetes
- Normativa para la reparación de dispositivos.
- Go to the subcategory
- Fuentes de alimentación de alto voltaje para precipitadores electrostáticos
- Impresoras y etiquetadoras industriales
- Certificates / Entitlements
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
Las fotos son solo para fines informativos. Ver especificaciones de producto
please use latin characters
Calentamiento de soldaduras de tubería
Tube and Pipe Coating Curing
Ambrell induction heating solutions are fast, efficient choices for all stages of the curing operation.
In preparation for coating, induction heating is used to remove surface moisture from pipes, preheating the pipe to the correct temperature for coating. Then – depending on the type of polymeric coating applied – the tube or pipe is heated to 150-300 °C (302-572°F) for curing the coating.
In addition to requiring less floor space than traditional furnaces and ovens, induction systems offer ergonomic benefits, are environmentally friendly, and have the unique capacity to selectively heat only portions of a tubular product.
Beyond these operational benefits, induction heating also delivers a higher quality coating solution. Unlike furnaces that rely on heating the coating first, induction heats the metal substrate beneath the coating – curing the coating from the inside out – leaving the surface soft and allowing solvents to evaporate and any outgassing to occur. Removing coatings to recover tubes and pipes for re-coating is another common use for induction heating. Typically, the pipe is heated to about 200 °C (392 °F), which breaks the bond between the surface and coating, allowing the coating to be peeled off. Using this method is more environmentally friendly than alternative methods of burning off or grinding off the coating.
Pre- and Post-Weld Heating
With the use of more thin-wall steel alloy pipes in today’s oil and gas pipelines, manufacturers and installers are turning to the fast, accurate and uniform heating of Ambrell induction heating systems. During the process of butt welding, induction heating is commonly used to preheat the joint area to 150-200 °C (302-392 °F) to prepare the area for a consistent quality weld. After welding, the joint area is heated to 600-650 °C (1112-1202 °F) for thermal stress relief of the weld area. Traditional gas flame and resistance heating systems are often impractical when these higher temperatures are required. Not only are they too slow to meet the cycle times demanded by the industry, but also the heating can be inaccurate and can lack uniformity around the full circumference and bandwidth of the weld joints.
Other benefits of induction heating include:
- Variable control over temperature/time parameters
- Minimal damage to factory coating, and no deleterious surface residues
- No open flames or exposed heating elements
- Reduces energy costs, and eliminates the need for large gas storage area
Hot Pipe Bending
Induction heating is the preferred heating method for bending of larger thicker walled pipes. This is due to the focused narrow band heating offered by the induction process with the resulting higher quality bends with lower quality and wall thinning than other bending methods. Because of this quality and accuracy, induction hot pipe bending is the preferred alternative to traditional fit-and-weld procedures, and can help companies meet the rigorous safety demands of the chemical and energy industries. Ambrell induction heating systems are available in the frequency and power levels to optimally heat any pipe for hot bending. Typically, induction hot bending is used on pipes with diameters from 2” (50mm) to 36” (915 mm), with wall thicknesses from Schedule 5 up to 2.5” (64mm).
Hot pipe bending with induction involves placing an induction heating coil around the pipe at the bend point, and heating a 1” (25mm) section of the pipe to 1000 °C (1832 °F). With the pipe at temperature, pressure is applied by a bending arm to bend it into the desired shape. Air and water quenches are used before and after the heat zone to promote bending solely at the hot zone.
Induction heating is the preferred heating method for bending larger thick-walled pipes used in the chemical and power generating industries.
Drill Pipe Heat Treatment
Drill Pipe Manufacturing
Ambrell supplies induction heating systems to companies that manufacture oil and mineral drill pipe to meet the requirements of API 5DP and GOST R 50278. Induction heating offers many benefits over flame or resistance heating during the manufacturing processes in drill pipe heat treating and welding of the tool posts onto the pipe ends, including:
- Consistency: Heat is generated within the part for precise, rapid, even heating
- Quality: Temperature variations that are seen in flame heating are eliminated
- Productivity: Faster heating enables single-part processing
- Safe: No exposed flame for a safer working environment
- Economical: Heat is applied only where it is needed
Upsetting or Forging Process for Wall Thickening
Drill pipe ends are thickened by heating the pipe end to 1100 °C (2012 °F) before forging. Induction is often used to heat multiple pipes in a single channel coil, or sequentially in a multi-position coil that produces one pipe-end every 150 seconds. These heating methods provide the time required for the heat to travel through the pipe wall, yet meet the 180 seconds floor-to-floor cycle time.
Ambrell induction heating systems allow the depth and rate of the heating to be precisely controlled, delivering the ideal temperature and timing for each step in the process, while meeting the 180 seconds floor to floor time cycle.
Tool Post Post Welding Heat Treating
After friction or arc welding of the tool post to the pipe end, the weld and surrounding pipe is brittle and requires a three-step heat treating process to toughen the joint area:
- Stress Relief: A 100mm (3.9”) wide band is heated to 700 °C (1292 °F) to stress relieve the weld area.
- Austenitization: A 25mm (1”) wide band is heated to 900 °C (1652 °F) for austenetising. The temperature through the pipe wall must be consistent prior to quenching.
- Through-Tempering:A 50mm (2”) band around the weld joint is heated to 675 °C (1247 °F) for through-tempering to produce the correct drill pipe toughness.
Heat Treating Ends of Thin Walled Mineral Drill Pipe
Both the internal and external threaded ends of mineral drill pipes are heat treated and surface hardened to provide a tough tube-end and to minimize wear during the repeated connecting and disconnecting during the drilling process.
Outside and inside temperatures during the annealing process on a 100mm band around the Tool box weld on a 126mm diameter pipe.
Austenitising 126mm Diameter Pipe
Through curie heating with inside and outside pipe 900 °C temperatures consistent before quenching.
Brazing Diamond or Carbide Inserts onto Oil and Gas Well Drill Bits
Oil and Gas Well Drill Bits
In drill bit manufacturing operations, multiple tool inserts (typically between 40 and 60) are individually brazed onto a single drill bit. These inserts may be a polycrystaline diamond compact (PDC) or tungsten carbide inserts (TCI)
Induction heating is an excellent technique for pre-heating the drill bit to 600 °C (1100 °F) in preparation for the torch brazing of the diamond inserts.
Drill bits come in a range of different sizes ranging from 8-20” (203-508mm) diameter. It takes 10-30 minutes for the heat to fully soak through the drill bit, which prepares the insert area for the brazing process. The torch is then used to raise the temperature of each individual joint to 790 °C (1454 °F) to flow the braze.
The PDC or TCI inserts are the cutting portion of the drilling tool, so they will wear out with use. Induction heating is used in the reclaiming process to heat up the drill bit, which allows the inserts to be removed for rebuilding the drill bit. (The inserts image is courtesy of U.S. Synthetics, Orem, UT.)
The insert’s brazing silver and copper “eutectic alloy” has a melting temperature of 790 °C (1454 °F), well below the melting temperature of silver or copper. This lower melt temperature prevents overheating of the diamond bit during brazing, yet still results in a strong joint to the drill bit.
Ambrell Induction Heating Systems at a Glance
Ambrell offers a wide power and frequency range with its EASYHEAT and EKOHEAT systems. So, whether your tube or pipe application is large or small, Ambrell can help you maximize cost efficiencies and productivity.
Ambrell’s systems are versatile with multiple capacitor and tap transformer configurations. They offer efficient power conversion, which minimizes energy expenses. They are also user-friendly, offer agile frequency tuning for repeatable heating, and can be easily integrated into your process thanks to their small footprint.
Systems include:
- Ease of integration into production processes with a portable workhead – up to 30m in some systems
- Wider frequency ranges allow more tubes and pipes of varying specifications to be heated with the same power supply
- Multiple capacitor and tap transformer configurations for a more versatile system than the competi-tion
- Agile frequency tuning for accurate, repeatable heating
- Efficient power conversion minimizes energy expenses
- Expert coil designs that maximize power delivery and save production time
- User-friendly operator interface in five languages (EN, ES, FR, DE, IT)
Envíe una consulta
¿Estás interesado en este producto? ¿Necesita información adicional o precios individuales?
Contacta con nosotras
Usted debe estar conectado
Tube and Pipe Coating Curing
Ambrell induction heating solutions are fast, efficient choices for all stages of the curing operation.
In preparation for coating, induction heating is used to remove surface moisture from pipes, preheating the pipe to the correct temperature for coating. Then – depending on the type of polymeric coating applied – the tube or pipe is heated to 150-300 °C (302-572°F) for curing the coating.
In addition to requiring less floor space than traditional furnaces and ovens, induction systems offer ergonomic benefits, are environmentally friendly, and have the unique capacity to selectively heat only portions of a tubular product.
Beyond these operational benefits, induction heating also delivers a higher quality coating solution. Unlike furnaces that rely on heating the coating first, induction heats the metal substrate beneath the coating – curing the coating from the inside out – leaving the surface soft and allowing solvents to evaporate and any outgassing to occur. Removing coatings to recover tubes and pipes for re-coating is another common use for induction heating. Typically, the pipe is heated to about 200 °C (392 °F), which breaks the bond between the surface and coating, allowing the coating to be peeled off. Using this method is more environmentally friendly than alternative methods of burning off or grinding off the coating.
Pre- and Post-Weld Heating
With the use of more thin-wall steel alloy pipes in today’s oil and gas pipelines, manufacturers and installers are turning to the fast, accurate and uniform heating of Ambrell induction heating systems. During the process of butt welding, induction heating is commonly used to preheat the joint area to 150-200 °C (302-392 °F) to prepare the area for a consistent quality weld. After welding, the joint area is heated to 600-650 °C (1112-1202 °F) for thermal stress relief of the weld area. Traditional gas flame and resistance heating systems are often impractical when these higher temperatures are required. Not only are they too slow to meet the cycle times demanded by the industry, but also the heating can be inaccurate and can lack uniformity around the full circumference and bandwidth of the weld joints.
Other benefits of induction heating include:
- Variable control over temperature/time parameters
- Minimal damage to factory coating, and no deleterious surface residues
- No open flames or exposed heating elements
- Reduces energy costs, and eliminates the need for large gas storage area
Hot Pipe Bending
Induction heating is the preferred heating method for bending of larger thicker walled pipes. This is due to the focused narrow band heating offered by the induction process with the resulting higher quality bends with lower quality and wall thinning than other bending methods. Because of this quality and accuracy, induction hot pipe bending is the preferred alternative to traditional fit-and-weld procedures, and can help companies meet the rigorous safety demands of the chemical and energy industries. Ambrell induction heating systems are available in the frequency and power levels to optimally heat any pipe for hot bending. Typically, induction hot bending is used on pipes with diameters from 2” (50mm) to 36” (915 mm), with wall thicknesses from Schedule 5 up to 2.5” (64mm).
Hot pipe bending with induction involves placing an induction heating coil around the pipe at the bend point, and heating a 1” (25mm) section of the pipe to 1000 °C (1832 °F). With the pipe at temperature, pressure is applied by a bending arm to bend it into the desired shape. Air and water quenches are used before and after the heat zone to promote bending solely at the hot zone.
Induction heating is the preferred heating method for bending larger thick-walled pipes used in the chemical and power generating industries.
Drill Pipe Heat Treatment
Drill Pipe Manufacturing
Ambrell supplies induction heating systems to companies that manufacture oil and mineral drill pipe to meet the requirements of API 5DP and GOST R 50278. Induction heating offers many benefits over flame or resistance heating during the manufacturing processes in drill pipe heat treating and welding of the tool posts onto the pipe ends, including:
- Consistency: Heat is generated within the part for precise, rapid, even heating
- Quality: Temperature variations that are seen in flame heating are eliminated
- Productivity: Faster heating enables single-part processing
- Safe: No exposed flame for a safer working environment
- Economical: Heat is applied only where it is needed
Upsetting or Forging Process for Wall Thickening
Drill pipe ends are thickened by heating the pipe end to 1100 °C (2012 °F) before forging. Induction is often used to heat multiple pipes in a single channel coil, or sequentially in a multi-position coil that produces one pipe-end every 150 seconds. These heating methods provide the time required for the heat to travel through the pipe wall, yet meet the 180 seconds floor-to-floor cycle time.
Ambrell induction heating systems allow the depth and rate of the heating to be precisely controlled, delivering the ideal temperature and timing for each step in the process, while meeting the 180 seconds floor to floor time cycle.
Tool Post Post Welding Heat Treating
After friction or arc welding of the tool post to the pipe end, the weld and surrounding pipe is brittle and requires a three-step heat treating process to toughen the joint area:
- Stress Relief: A 100mm (3.9”) wide band is heated to 700 °C (1292 °F) to stress relieve the weld area.
- Austenitization: A 25mm (1”) wide band is heated to 900 °C (1652 °F) for austenetising. The temperature through the pipe wall must be consistent prior to quenching.
- Through-Tempering:A 50mm (2”) band around the weld joint is heated to 675 °C (1247 °F) for through-tempering to produce the correct drill pipe toughness.
Heat Treating Ends of Thin Walled Mineral Drill Pipe
Both the internal and external threaded ends of mineral drill pipes are heat treated and surface hardened to provide a tough tube-end and to minimize wear during the repeated connecting and disconnecting during the drilling process.
Outside and inside temperatures during the annealing process on a 100mm band around the Tool box weld on a 126mm diameter pipe.
Austenitising 126mm Diameter Pipe
Through curie heating with inside and outside pipe 900 °C temperatures consistent before quenching.
Brazing Diamond or Carbide Inserts onto Oil and Gas Well Drill Bits
Oil and Gas Well Drill Bits
In drill bit manufacturing operations, multiple tool inserts (typically between 40 and 60) are individually brazed onto a single drill bit. These inserts may be a polycrystaline diamond compact (PDC) or tungsten carbide inserts (TCI)
Induction heating is an excellent technique for pre-heating the drill bit to 600 °C (1100 °F) in preparation for the torch brazing of the diamond inserts.
Drill bits come in a range of different sizes ranging from 8-20” (203-508mm) diameter. It takes 10-30 minutes for the heat to fully soak through the drill bit, which prepares the insert area for the brazing process. The torch is then used to raise the temperature of each individual joint to 790 °C (1454 °F) to flow the braze.
The PDC or TCI inserts are the cutting portion of the drilling tool, so they will wear out with use. Induction heating is used in the reclaiming process to heat up the drill bit, which allows the inserts to be removed for rebuilding the drill bit. (The inserts image is courtesy of U.S. Synthetics, Orem, UT.)
The insert’s brazing silver and copper “eutectic alloy” has a melting temperature of 790 °C (1454 °F), well below the melting temperature of silver or copper. This lower melt temperature prevents overheating of the diamond bit during brazing, yet still results in a strong joint to the drill bit.
Ambrell Induction Heating Systems at a Glance
Ambrell offers a wide power and frequency range with its EASYHEAT and EKOHEAT systems. So, whether your tube or pipe application is large or small, Ambrell can help you maximize cost efficiencies and productivity.
Ambrell’s systems are versatile with multiple capacitor and tap transformer configurations. They offer efficient power conversion, which minimizes energy expenses. They are also user-friendly, offer agile frequency tuning for repeatable heating, and can be easily integrated into your process thanks to their small footprint.
Systems include:
- Ease of integration into production processes with a portable workhead – up to 30m in some systems
- Wider frequency ranges allow more tubes and pipes of varying specifications to be heated with the same power supply
- Multiple capacitor and tap transformer configurations for a more versatile system than the competi-tion
- Agile frequency tuning for accurate, repeatable heating
- Efficient power conversion minimizes energy expenses
- Expert coil designs that maximize power delivery and save production time
- User-friendly operator interface in five languages (EN, ES, FR, DE, IT)
Su agradecimiento a la reseña no pudo ser enviado
Reportar comentario
Reporte enviado
Su reporte no pudo ser enviado
Escriba su propia reseña
Reseña enviada
Su reseña no pudo ser enviada