Últimas publicaciones

  • 3.3 kV Full SiC MOSFETs – Towards High-Performance Traction Inverters
    3.3 kV Full SiC MOSFETs – Towards High-Performance Traction Inverters

    Power semiconductor devices made of silicon carbide (SiC) are regarded as the major innovation in modern power electronics. Compared to classical silicon (Si) devices, SiC enables more efficient and more compact converters to save electric energy and valuable materials.

    Read more
  • Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 8 of 8
    Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 8 of 8

    With increasing complexity and the growing number of electronic devices, the need to ensure the harmonious functioning and coexistence of these devices becomes more and more important. Hence, it is essential to emphasize the significance of Electromagnetic Compatibility. Here are a few key aspects that highlight its importance:

    Read more
  • Gaining Speed: Mitsubishi Electric SiC-Power Modules
    Gaining Speed: Mitsubishi Electric SiC-Power Modules

    The research activities on SiC are coordinated in Japan by an organization called NEDO (New Energy and Industrial Development Organization). NEDO is Japan’s largest public R&D management organization for coordinating the innovation efforts in strategic directions. The development of high power density and high withstand voltage SiC power modules is one of NEDO’s main R&D directions and Mitsubishi Electric is a key player in this activity [2]. Several outstanding Mitsubishi Electric...

    Read more
  • Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8
    Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8

    Here are some essential points to consider when designing devices with EMC in mind:

    Read more
  • 1700V X-Series HVIGBT Power Modules with Excellent Performance and Reliability
    1700V X-Series HVIGBT Power Modules with Excellent Performance and Reliability

    Mitsubishi Electric has several years of experience and a long development history of 1700V modules for railway application from the start of this century. This year MITSUBISHI ELECTRIC has released the latest generation of 1700V IGBT power modules called X-Series that satisfies requirements of railway applications. Fig. 1 shows the historical evolution of the 1700V HVIGBT modules indicating the continuous reduction of the IGBT forward voltage. The IGBT forward voltage contributes to the...

    Read more
  • Robust High Voltage IGBT Power Modules Against Humidity and Condensation
    Robust High Voltage IGBT Power Modules Against Humidity and Condensation

    The power electronics is exposed to extreme environmental conditions during the operation like dust, temperature, humidity, vibrations or chemicals. The mission profile of the temperature and relative humidity has a wide range dependent on application and the location of operation.

    Read more
  • Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 6 out of 8
    Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 6 out of 8

    Modern electronic devices are used in various environments, exposed to different working conditions, and their reliability is of utmost importance to users. Here are several factors that impact the reliability and durability of electronic devices:

    Read more
  • 1200V SiC Hybrid IGBT Modules for High Frequency Applications
    1200V SiC Hybrid IGBT Modules for High Frequency Applications

    The switching frequency in those applications is usually higher than 20kHz, thus exceeding the range for which standard industrial IGBTmodules are optimized for. Since several years Mitsubishi Electric is offering a dedicated IGBT-series for those high frequency applications, called NFH-series. For reducing the switching loss it is using IGBT-chips with an optimized trade-off between Vce(sat) and Eoff. As next innovation step Mitsubishi Electric now is introducing it’s Silicon Carbide Chip...

    Read more
  • Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 5 of 8
    Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 5 of 8

    Proper circuit design and layout aim to minimize electromagnetic interference emissions and ensure immunity to external interferences. Here are some key aspects of circuit design and layout related to EMC:

    Read more
  • Towards a Greener Future: Highly Efficient SiC Power Devices for Wide Application Range
    Towards a Greener Future: Highly Efficient SiC Power Devices for Wide Application Range

    The reduction of carbon dioxide and the responsible use of electric energy are main drivers for a more sustainable future society. Silicon Carbide (SiC) and its superior physical properties shall save even more electric energy and make power-electronic converters more compact, which reduces the consumption of valuable materials and resources.

    Read more
  • Demands by Future Railway Converters and How They Change Power Semiconductor Modules
    Demands by Future Railway Converters and How They Change Power Semiconductor Modules

    In 2015, a consortium of train manufacturers and electric-equipment suppliers started discussions about the future of rolling stocks and radical innovations in the field of railway vehicles. The discussions, as part of the Horizon 2020 Project Roll2Rail, resulted also in technical requirements of tomorrow’s power semiconductor modules. These shall provide:

    Read more
  • Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 4 of 8
    Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 4 of 8

    Electromagnetic emission refers to the process in which electronic devices generate and emit unwanted electromagnetic signals into the environment. On the other hand, electromagnetic immunity refers to the impact of electromagnetic disturbances from external sources on the operation of electronic devices.

    Read more
  • Advanced Si-IGBT Chip Design for Maximum Overall System Performance
    Advanced Si-IGBT Chip Design for Maximum Overall System Performance

    Mitsubishi Electric has introduced the new G1 series Intelligent Power Modules (IPM) with an advanced Si-IGBT design to address several key performance parameters and enable the end-user to achieve high system performance. The advancements in the G1 IPM chip technology are aimed at resolving some inherent drawback of the Si-IGBT especially when it is employed for motor control applications. The G1 IPM device has been developed by implementing some key advancements in the latest 7th generation...

    Read more
  • Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 3 of 8
    Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 3 of 8

    Electromagnetic Compatibility (EMC) is an essential aspect of designing, manufacturing, and using electronic devices. To ensure consistent standards and minimize electromagnetic interference within the European Union, a series of regulations concerning EMC have been introduced. Here is an overview of the main regulations and EMC standards in the European Union:

    Read more
  • Parallel Operation: Influence of Power Module Parameters
    Parallel Operation: Influence of Power Module Parameters

    The current imbalance during module operation can be caused both by the characteristics of the paralleled power modules, such as the different forward voltage and by the design of the power converter itself. The interface of power modules, such as power connection on DC and AC side, the design of gate driver, and the gate driver connection to the power modules, have an influence on static and dynamic current imbalance of modules connected in parallel. An overview of the various factors that...

    Read more
  • New Transfer Molded SMD Type IPM
    New Transfer Molded SMD Type IPM

    Applications such as small drives (in the range of 100W output power) have certain special requirements with regards to the design of the power supply unit. The power supply unit encompasses the power semiconductor module and the associated peripheries (such as gatedrive, control, protection and heatsink) which are assembled using a single PCB. This unit must be able to deliver the highest possible efficiency and must offer a high degree of compactness. Additionally, it is expected that the...

    Read more
  • Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 2 of 8
    Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 2 of 8

    Electromagnetic interference refers to unwanted electromagnetic signals that can affect the operation of electronic devices and systems. They come in various forms such as radio waves, electromagnetic pulses, electrical surges, or conducted disturbances.

    Read more
  • More Power and Higher Reliability by 7th Gen. IGBT Module with New SLC-Technology
    More Power and Higher Reliability by 7th Gen. IGBT Module with New SLC-Technology

    Industrial IGBT Modules are used in various fields of applications. All those applications require compact power modules with high power density, high reliability and high efficiency with reasonable cost. To fulfill all these requirements, the 7th Gen. NX-type IGBT Modules based on SLC-Technology have been developed. The 7th Gen. IGBT, which is based on CSTBT™ concept, provides high efficiency by the reduction of dynamic and static losses [2]. The loss reduction is the first step to realize a...

    Read more
|< .... 345678910111213 .... >|
Showing 127 to 144 of 313 (18 Pages)