Debes estar logueado
-
moreX
-
Componentes
-
-
Category
-
Semiconductores
- Diodos
- Tiristores
-
Módulos con aislamiento eléctrico
- Módulos con aislamiento eléctrico | VISHAY (IR)
- Módulos con aislamiento eléctrico | INFINEON (EUPEC)
- Módulos con aislamiento eléctrico | Semikron
- Módulos con aislamiento eléctrico | POWEREX
- Módulos con aislamiento eléctrico | IXYS
- Módulos con aislamiento eléctrico | POSEICO
- Módulos con aislamiento eléctrico | ABB
- Módulos con aislamiento eléctrico | TECHSEM
- Go to the subcategory
- Rectificadores de puente
-
Transistores
- Transistores | GeneSiC
- Módulos SiC MOSFET | Mitsubishi
- Módulos SiC MOSFET | STARPOWER
- Módulos ABB SiC MOSFET
- Módulos IGBT | MITSUBISHI
- Módulos de transistores | MITSUBISHI
- Módulos MOSFET | MITSUBISHI
- Módulos de transistores | ABB
- Módulos IGBT | POWEREX
- Módulos IGBT | INFINEON (EUPEC)
- Elementos semiconductores de carburo de silicio (SiC)
- Go to the subcategory
- Controladores de puerta
- Bloques de energía
- Go to the subcategory
-
Convertidores de corriente y tensión LEM
-
Transductores de corriente | LEM
- Transductor de corriente con bucle de retroalimentación cerrado (C / L)
- Transductor de corriente con bucle de retroalimentación abierto (O / L)
- Transductor de corriente alimentado por voltaje unipolar
- Transductores en tecnología Eta
- Transductores de corriente de alta precisión serie LF xx10
- Transductores de corriente de la serie LH
- HOYS y HOYL: dedicados para el montaje directamente en un riel conductor
- Convertidores de corriente en la tecnología SMD de las series GO-SME y GO-SMS
- Transductores de corriente AUTOMOCIÓN
- Go to the subcategory
-
Transductores de voltaje | LEM
- Convertidores de voltaje de la serie LV
- Convertidores de voltaje de la serie DVS
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de voltaje de la serie DVM
- Transductor de voltaje - DVC 1000-P
- Transductores de voltaje - Serie DVC 1000
- Go to the subcategory
- Transductores de corriente de precisión | LEM
- Go to the subcategory
-
Transductores de corriente | LEM
-
Componentes pasivos (condensadores, resistencias, fusibles, filtros)
- Resistencias
-
Fusibles
- Fusibles miniatura para circuitos electrónicos, serie ABC y AGC
- Fusibles tubulares de acción rápida
- Eslabones fusibles de retardo de tiempo con características GL / GG y AM
- Eslabones fusibles ultrarrápidos
- Fusibles de acción rápida (estándar británico y estadounidense)
- Fusibles de acción rápida (estándar europeo)
- Fusibles de tracción
- Eslabones fusibles de alto voltaje
- Go to the subcategory
-
Condensadores
- Condensadores de motor
- Condensadores electrolíticos
- Condensadores de película
- Condensadores de potencia
- Condensadores para circuitos de CC
- Condensadores de corrección del factor de potencia
- Condensadores de alto voltaje
- Condensadores de calentamiento por inducción
- Condensadores de almacenamiento de energía y pulsos
- Condensadores de ENLACE CC
- Condensadores para circuitos AC/DC
- Go to the subcategory
- Filtros EMI
- Supercondensadores
-
Protección contra sobretensiones
- Protección contra sobretensiones para aplicaciones coaxiales
- Protección contra sobretensiones para sistemas de videovigilancia
- Protección contra sobretensiones para cableado de potencia
- Pararrayos para LED
- Descargadores de sobretensiones para energía fotovoltaica
- Protección del sistema de pesaje
- Protección contra sobretensiones para Fieldbus
- Go to the subcategory
- Go to the subcategory
-
Relés y contactores
- Teoría de relés y contactores
- Relés semiconductores de CA trifásicos
- Relés semiconductores de CA trifásicos
- Reguladores, controles y accesorios
- Arranques suaves y contactores de inversión
- Relés electromecánicos
- Contactores
- Interruptores giratorios
-
Relés semiconductores de CA monofásicos
- Relés semiconductores CA monofásicos, serie 1 | D2425 | D2450
- Relés semiconductores CA monofásicos, series CWA y CWD
- Relés semiconductores CA monofásicos de las series CMRA y CMRD
- Relés semiconductores de CA monofásicos, serie PS
- Relés semiconductores de CA dobles y cuádruples, serie D24 D, TD24 Q, H12D48 D
- Relés de estado sólido monofásicos, serie gn
- Relés semiconductores de ca monofásicos, serie ckr
- Relés AC monofásicos SERIE ERDA Y ERAA para carril DIN
- Relés AC monofásicos para corriente 150A
- Relés dobles de estado sólido integrados con disipador de calor para carril DIN
- Go to the subcategory
- Relés semiconductores CA monofásicos para PCB
- Relés de interfaz
- Go to the subcategory
- Núcleos y otros componentes inductivos
- Radiadores, varistores, protecciones térmicas
- Aficionados
- Aire Acondicionado, Accesorios para Armarios Eléctricos, Neveras
-
Baterías, cargadores, fuentes de alimentación de búfer e inversores
- Baterías, cargadores - descripción teórica
- Baterías de iones de litio. Baterías personalizadas. Sistema de gestión de batería (BMS)
- Pilas
- Cargadores de baterías y accesorios
- Fuente de alimentación de respaldo de UPS y fuentes de alimentación de búfer
- Convertidores y accesorios para fotovoltaica
- Almacen de energia
- Celdas de combustible
- Baterías de iones de litio
- Go to the subcategory
-
Automaticas
- Futaba Drone Parts
- Finales de carrera, microinterruptores
- Sensores, transductores
- Pirometría
- Contadores, temporizadores, medidores de panel
- Dispositivos de protección industrial
- Señalización luminosa y sonora
- Cámara termográfica
- Pantallas LED
- Botones e interruptores
-
Grabadores
- Grabadora AL3000
- Grabadora KR2000
- Grabadora KR5000
- Medidor HN-CH con función de registro de humedad y temperatura
- Consumibles para registradores
- Grabadora 71VR1
- Grabadora KR 3000
- Grabadores de PC de la serie R1M
- Grabadores de PC de la serie R2M
- Grabador de PC, 12 entradas aisladas - RZMS-U9
- Grabador de PC, USB, 12 entradas aisladas - RZUS
- Go to the subcategory
- Go to the subcategory
-
Cables, alambres Litz, conductos, conexiones flexibles
- alambres
- cables Litz
-
Cables para aplicaciones especiales
- Los cables de extensión y compensación
- Cables para termopares
- Los cables de conexión a PT czyjnków
- Multicore cables temp. -60 ° C a + 1400 ° C
- cables de media tensión SILICOUL
- ignición alambres
- Los cables calefactores
- temp núcleo único. -60 ° C a + 450 ° C
- conductores de trenes
- El calentamiento de los cables en el Ex
- Go to the subcategory
- camisas
-
trenzas
- trenzas planas
- trenzas ronda
- trenza muy flexible - plana
- trenza muy flexible - Ronda
- Copper cilíndrico trenzado
- Copper protector de la trenza y cilíndrica
- cintas de conexión flexibles
- Trenzas cilíndrico galvanizado y acero inoxidable
- Aislamiento de PVC trenzas de cobre - Temperatura 85 ° C
- aluminio trenzado plano
- Kit de conexión - trenzas y tubos
- Go to the subcategory
- Accesorios para la tracción
- Terminales de cable
- barras flexibles aisladas
- carril flexible multicapa
- sistemas de gestión de cables
- Conductos, tuberías
- Go to the subcategory
- View all categories
-
Semiconductores
-
-
- Suppliers
-
Applications
- Accionamientos de CA y CC (inversores)
- Automatización HVAC
- Automatización industrial
- Automatización industrial
- Calentamiento por inducción
- Componentes para atmósferas potencialmente explosivas (EX)
- Dispositivos de protección industrial
- Energy bank
- Equipos para Armarios de Distribución, Control y Telecomunicaciones
- Fuentes de alimentación (UPS) y sistemas rectificadores
- Impresión
- Máquinas de soldar y máquinas de soldar
- Máquinas herramientas CNC
- Máquinas para secar y procesar madera
- Máquinas para termoformado de plásticos
- Medición y regulación de temperatura
- Medición y regulación de temperatura
- Minería, metalurgia y fundación
- Motores y transformadores
- Tracción de tranvía y ferrocarril
-
Instalación
-
-
Montaż urządzeń
- Instalación de armarios
- Diseño y montaje de armarios
- Instalación de sistemas de energía
- Componentes
- Máquinas construidas por encargo
- Trabajo de investigación y desarrollo de I+D.
-
Probadores industriales
- Probadores de semiconductores de potencia
- Comprobadores de aparatos eléctricos
- Comprobadores de varistores y descargadores de sobretensiones
- Probador de fusibles automotriz
- Probador qrr para medir cargas transitorias en tiristores y diodos de potencia
- Comprobador de rotores de interruptores automáticos de la serie FD
- Comprobador de auditoría de dispositivos de corriente residual
- Probador de calibración de relés
- Probador de pruebas visuales de vástagos de resortes de gas
- Interruptor de tiristor de alta corriente
- Probador de rotura de malla
- Go to the subcategory
- View all categories
-
-
-
Inductores
-
-
Modernizacja induktorów
- Reparación de inductores usados
- Modernización de inductores
-
Producción de nuevos inductores.
- Endurecimiento de cigüeñales
- Endurecimiento de los dientes de la sierra de cinta
- Calentamiento de elementos antes de pegar
- Endurecimiento de pistas de rodadura de cojinetes de cubo de rueda de automoción
- Endurecimiento de los componentes de la transmisión motriz
- Endurecimiento de ejes escalonados
- Calentamiento en juntas de contracción
- Endurecimiento de escaneo
- Soldadura blanda
- Calentadores de palanquilla
- Go to the subcategory
- Base de conocimientos
- View all categories
-
-
-
Dispositivos de inducción
-
-
Urządzenia indukcyjne
-
Generadores de calentamiento por inducción
-
Generadores de calentamiento por inducción Ambrell
- Generadores: potencia 500 W, frecuencia 150-400 kHz
- Generadores: Potencia 1,2 - 2,4 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 4.2 - 10 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 10-15 kW, frecuencia 50-150 kHz
- Generadores: potencia 30-45 kW, frecuencia 50-150 kHz
- Generadores: potencia 65-135 kW, frecuencia 50-150 kHz
- Generadores: potencia 180-270 kW, frecuencia 50-150 kHz
- Generadores: potencia 20-35-50 kW, frecuencia 15-45 kHz
- Generadores: cнага 75-150 кВ, фреквенција 15-45 кХз
- Generadores: potencia 200-500 kW, frecuencia 15-45 kHz
- Generadores: potencia 20-50 kW, frecuencia 5-15 kHz
- Go to the subcategory
- Generadores de calentamiento por inducción Denki Kogyo
-
Generadores de calentamiento por inducción JKZ
- Generadores de la serie CX, frecuencia: 50-120kHz, potencia: 5-25kW
- Generadores de la serie SWS, frecuencia: 15-30kHz, potencia: 25-260kW
- Generadores (hornos) para conformar y forjar serie MFS, frecuencia: 0.5-10kHz, potencia: 80-500kW
- Hornos de fusión MFS, frecuencia: 0,5-10 kHz, potencia: 70-200 kW
- Generadores de la serie UHT, frecuencia: 200-400kHz, potencia: 10-160kW
- Go to the subcategory
- Generadores de lámparas para calentamiento por inducción
- Generadores de calentamiento por inducción Himmelwerk
- Go to the subcategory
-
Generadores de calentamiento por inducción Ambrell
- Reparaciones y modernización
- Periféricos
-
Aplicaciones
- Aplicaciones médicas
- Aplicaciones para la industria automotriz
- Soldadura blanda
- Soldadura
- Soldadura fuerte de aluminio
- Soldadura de herramientas magnéticas de acero inoxidable
- Soldadura de precisión
- Soldadura fuerte en atmósfera protectora
- Soldadura de tapas de disipadores de calor de latón y acero
- Soldadura de carburos sinterizados
- Soldar la punta de cobre y el cable
- Go to the subcategory
- Base de conocimientos
- View all categories
-
Generadores de calentamiento por inducción
-
-
-
Servicio
-
-
asd
- Servicio de enfriadores de agua y aires acondicionados industriales
- Reparaciones y modernización de máquinas
-
Reparaciones de electrónica de potencia, electrónica y dispositivos de automatización
- Servicio de inversores, servoaccionamientos y reguladores DC
- Servicio de inversores fotovoltaicos
- Servicio de rectificadores de galvanoplastia FLEXKRAFT
- Oferta de reparación de equipos
- Lista de dispositivos reparados
- Reparación de máquinas de laminado de billetes
- Normativa para la reparación de dispositivos.
- Go to the subcategory
- Fuentes de alimentación de alto voltaje para precipitadores electrostáticos
- Impresoras y etiquetadoras industriales
- Certificates / Entitlements
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
Study of Parameters for the Explosiveness of Combustible Dusts
Study of Parameters for the Explosiveness of Combustible Dusts
Introduction
The text aims to provide practical guidance for individuals who are faced with the need to assess safety requirements in industrial plants where large quantities of combustible solid particles (dusts) are processed. From a process safety perspective, it is essential that the dust be examined to determine the type of risk involved. Which dusts should be tested? What tests are required? When can values obtained from published sources be used? These are some of the issues that will be addressed in the following text. The goal is to offer advice that enables the reader to make informed decisions to improve safety while minimizing costs. The first step in establishing a sound safety foundation is understanding the nature of the materials being processed.
Testing Substances vs. Using Existing Data
In the case of well-known raw materials, published data may be acceptable in many instances. Usually, such data can be considered relatively safe provided they come from a credible source, such as NFPA documents. However, it would be a mistake to accept published data without reservation, and, therefore, the most sensible approach is to compare available data describing parameters with those of the actual material currently being analyzed.
Granular Material | Pmax (bar) | Kst (bar*m/s) |
---|---|---|
Aluminum | 12.4 | 415 |
Coal | 9.2 | 129 |
Corn Starch | 7.9 | 186 |
Dextrin | 8.8 | 106 |
Epoxy Resin | 7.9 | 129 |
Iron Carbonyl | 6.1 | 111 |
Lactose | 7.7 | 81 |
Polypropylene | 8.4 | 101 |
Rice | 7.7 | 118 |
Sugar - Granulated | 6.2 | 66 |
Sugar - Powdered | 7.0 | 122 |
Sulfur | 6.8 | 151 |
Wheat Flour | 8.3 | 87 |
Wheat Grain | 9.3 | 112 |
Wood Flour | 10.5 | 205 |
TABLE 1 - PUBLISHED DUST VALUES - NFPA 652 2019
For instance, a significant parameter in assessing the explosive hazard of dust is the weight percentage of moisture content. If they are not similar - meaning the moisture level in the sources compared to the actual situation - it indicates that the data is not suitable for the analyzed scenario. Test protocols typically specify whether the tested materials have a moisture content below 5% by weight. Another useful characteristic for comparing materials is the particle size distribution. Maintaining the same oxidation conditions, larger particles oxidize more slowly than smaller particles. Comparing the particle size distribution is useful when using the provided data. In cases where published data pertains to a material significantly different from the one being processed, complications may arise. Even if both materials are similar in other aspects, this can lead to problems. A short case study illustrates the difficulty that can arise.
For example, a significant parameter in assessing the explosive hazard of dust is the weight percentage of moisture content. If they are not similar - meaning the moisture level in the sources compared to the actual situation - it indicates that the data is not suitable for the analyzed scenario. Test protocols typically specify whether the tested materials have a moisture content below 5% by weight. Another useful characteristic for comparing materials is the particle size distribution. Maintaining the same oxidation conditions, larger particles oxidize more slowly than smaller particles. Comparing the particle size distribution is useful when using the provided data. In cases where published data pertains to a material significantly different from the one being processed, complications may arise. Even if both materials are similar in other aspects, this can lead to problems. A short case study illustrates the difficulty that can arise.
The published data pertains to granulated sugar. However, at the end of the production line, sugar was collected in the form of dust through one of the filters. The dust turned out to consist of significantly smaller particles than the granulated sugar that was tested.
This difference is significant because sugar in the form of dust ignites much more easily and oxidizes faster (i.e., it has a low Minimum Ignition Energy (MIE) and a high Kst). In short, an explosion occurred due to the underestimation of the protective system. Another less obvious drawback of using published data is their conservatism. This means that the published values may be higher, and in many cases, significantly higher than the actual values for the given materials. In other words, studying the actual dust often leads to substantial savings in the design and construction of tanks/facilities requiring explosion protection. This will be discussed in detail later in the article.
Combustible Dust Explosion Classification | Kst |
St1 | 0-200 |
St2 | 200-300 |
St3 | >300 |
Dust Testing
There are many tests that can be conducted to assess the risk and behavior associated with combustible dusts. However, experts do not always agree on when and why specific tests should be performed for a given dust scenario. A comprehensive discussion on this topic goes beyond the scope of this publication. Instead, a brief overview of the most commonly performed tests and the reasons for conducting them will be presented. It is essential to note that not every test is necessary or required every time for every type of dust or situation. Therefore, it is advisable to seek the help of an expert or a specialized company who can determine the appropriate tests to be performed and guide accordingly.
What Tests are Available?
- The combustibility test of dust is also known as "the OSHA Salt Lake City test" or "the Go/No-Go test." Currently, it is part of ASTM E1226 (see below). This is a simple screening test conducted to determine whether the dust can behave explosively. This method cannot be used for sizing, but it can minimize testing costs if the result is "NO-GO." It is essential to note that this test should be conducted first when the explosibility conductivity of the dust is in accordance with ASTM E-1226.
- The combustibility test of dust in North America is defined by ASTM E-1226, but a similar protocol exists for Europe (results from tests conducted in notified laboratories in the EU can be safely used). This test is most commonly performed using a 20-liter sphere, but it can also be conducted using a 1 m3 test vessel (more on this later in the article) and provides Kst and Pmax values. These values are essential for the selection of explosion protection devices such as venting panels or active suppression systems. This test belongs to the basic category and should be conducted for all combustible dusts.
- Minimum Explosible Concentration (MEC). In North America, it is defined by ASTM 1515, but a similar standard exists in Europe. For dust to behave explosively, it must be lifted into a dust cloud (known as a cloud) with a sufficient concentration for the flame to propagate through the mass of unburned material in a chain reaction. This test is useful in situations where dust concentration may be low and controlled. Examples may include certain types of dryers or conveyors.
- Minimum Ignition Energy (MIE). In North America, it is defined by the ASTM E-2019 standard, but a similar test method also exists in Europe. Some dusts ignite more easily than others. This test determines how much electrostatic discharge energy is required to ignite a dust cloud (cloud). Combustible dusts differ in their ease of ignition. Both extreme cases are essential for understanding the processed materials. There are situations where safe handling requires personnel working with the materials to be grounded to prevent self-ignition due to electrostatic discharges from their own bodies. On the other hand, there are materials that are so difficult to ignite that they can be safely processed without the concern of electrostatic discharges.
This raises a certain question: Should the dust be tested in its received state, or should it be dried and reduced/classified to test only fine particles? Again, accepted standards encourage efforts to consider the worst-case scenario. In cases where variables such as particle size and moisture content are carefully monitored and controlled, testing materials in their received state may be the best option. Otherwise, it is advisable to adopt a more cautious approach and follow standards that represent the current engineering knowledge.
Another important factor is whether the processed dust consists of a single material or is a mixture of several. Mixtures present several challenges. Firstly, they often contain multiple components. For example, many vitamins are commonly made up of a bill of materials with at least 25 different components. Testing everything is not practical. Generally, the components that make up the majority of the total mixture by weight or volume will be representative of the overall combustibility characteristics of the mixture. Thus, in the case of a multi-component vitamin, the five or six major components that make up the highest percentage of the mixture should be tested as a minimum.
Dusts that can change their properties or undergo degradation pose particular challenges in both sampling and packaging or shipping. Metal dusts provide an excellent example. They readily undergo oxidation and must be packed in airtight vacuum containers and shipped as quickly as possible. However, it should be noted that not all dust samples can be transported by air.
Controversies regarding the validity of tests
A recent commission was carried out where certain materials were tested with positive results. However, these results are being questioned, and despite articles and heated discussions, the final results remain controversial. A scientific publication was prepared, and further discussions were organized, but the controversy remains unresolved. To describe the dispute, it is necessary to present the background of the entire history. As mentioned, the test set consists of a 20-liter sphere and another vessel with a volume of 1 cubic meter. The 20-liter sphere was specifically developed as a practical laboratory set that could provide results close enough (i.e., +/- 10%) to those obtained in the 1-cubic-meter sphere, which serves as the benchmark testing sphere. The 1-cubic-meter sphere is the sphere of reference testing. There are various settings and equipment configurations enabling an acceptable level of accuracy, and it is a common practice to regulate this type of setup. A versatile methodology ensuring the mentioned accuracy has also been developed. In the case of materials that might be very difficult to ignite, the 20-liter sphere showed positive results, but retesting in the 1-cubic-meter sphere did not confirm the findings. Why? What does this mean? Can the results obtained using the 20-liter sphere be considered reliable?
The reasons for this situation seem to stem from the fact that depending on the testing setup, the 20-liter sphere may be overly stimulated by excessive ignition energy. As a result, some customers pay for costly additional tests in the larger 1-cubic-meter sphere and receive negative results. What does this imply? We know that in one set of conditions, the test material showed positive results, while in another set, it yielded negative results. Regulatory organizations typically take the stance that a positive result is a positive result, and the fact that different results are obtained using a different test set is considered insignificant. According to OSHA, Kst = 1 bar*m/s indicates a combustible dust. Furthermore, the 20-liter sphere has been commonly used in North America for decades, making it challenging to question its data. However, recent studies suggest that data from the 20-liter sphere may also not be accurate for metal dusts. Comparative tests between the 20-liter sphere and the 1-cubic-meter sphere showed that the same metal dusts actually increased the Kst value during testing in the larger apparatus. Further research is being conducted to explain this phenomenon, as metal dusts exhibit different behavior during testing compared to organic materials.
The first step in developing a solid foundation for the safety of combustible dusts is to gain scientific and comprehensive understanding of the materials being worked with. Each dust is unique, and each explosion related to them is also exceptional. The more we know, the greater the chances of avoiding unacceptable losses. For well-known materials, such as most agricultural dusts, data published by reputable sources should be sufficiently accurate. It is also essential to ensure that the published data used are representative of materials similar to those being worked with. When in doubt, testing the material is necessary. There are many tests available to determine the characteristics of the dust, and not every test is required in every situation. A thorough understanding of the process is necessary to determine which tests are needed. While some testing methods have been questioned, it is a fact that those who utilized the data and acted accordingly improved their safety and, as far as is known, did not incur any losses.
Deja un comentario