Debes estar logueado
-
moreX
-
Componentes
-
-
Category
-
Semiconductores
- Diodos
- Tiristores
-
Módulos con aislamiento eléctrico
- Módulos con aislamiento eléctrico | VISHAY (IR)
- Módulos con aislamiento eléctrico | INFINEON (EUPEC)
- Módulos con aislamiento eléctrico | Semikron
- Módulos con aislamiento eléctrico | POWEREX
- Módulos con aislamiento eléctrico | IXYS
- Módulos con aislamiento eléctrico | POSEICO
- Módulos con aislamiento eléctrico | ABB
- Módulos con aislamiento eléctrico | TECHSEM
- Go to the subcategory
- Rectificadores de puente
-
Transistores
- Transistores | GeneSiC
- Módulos SiC MOSFET | Mitsubishi
- Módulos SiC MOSFET | STARPOWER
- Módulos ABB SiC MOSFET
- Módulos IGBT | MITSUBISHI
- Módulos de transistores | MITSUBISHI
- Módulos MOSFET | MITSUBISHI
- Módulos de transistores | ABB
- Módulos IGBT | POWEREX
- Módulos IGBT | INFINEON (EUPEC)
- Elementos semiconductores de carburo de silicio (SiC)
- Go to the subcategory
- Controladores de puerta
- Bloques de energía
- Go to the subcategory
-
Convertidores de corriente y tensión LEM
-
Transductores de corriente | LEM
- Transductor de corriente con bucle de retroalimentación cerrado (C / L)
- Transductor de corriente con bucle de retroalimentación abierto (O / L)
- Transductor de corriente alimentado por voltaje unipolar
- Transductores en tecnología Eta
- Transductores de corriente de alta precisión serie LF xx10
- Transductores de corriente de la serie LH
- HOYS y HOYL: dedicados para el montaje directamente en un riel conductor
- Convertidores de corriente en la tecnología SMD de las series GO-SME y GO-SMS
- Transductores de corriente AUTOMOCIÓN
- Go to the subcategory
-
Transductores de voltaje | LEM
- Convertidores de voltaje de la serie LV
- Convertidores de voltaje de la serie DVS
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de voltaje de la serie DVM
- Transductor de voltaje - DVC 1000-P
- Transductores de voltaje - Serie DVC 1000
- Go to the subcategory
- Transductores de corriente de precisión | LEM
- Go to the subcategory
-
Transductores de corriente | LEM
-
Componentes pasivos (condensadores, resistencias, fusibles, filtros)
- Resistencias
-
Fusibles
- Fusibles miniatura para circuitos electrónicos, serie ABC y AGC
- Fusibles tubulares de acción rápida
- Eslabones fusibles de retardo de tiempo con características GL / GG y AM
- Eslabones fusibles ultrarrápidos
- Fusibles de acción rápida (estándar británico y estadounidense)
- Fusibles de acción rápida (estándar europeo)
- Fusibles de tracción
- Eslabones fusibles de alto voltaje
- Go to the subcategory
-
Condensadores
- Condensadores de motor
- Condensadores electrolíticos
- Condensadores de película
- Condensadores de potencia
- Condensadores para circuitos de CC
- Condensadores de corrección del factor de potencia
- Condensadores de alto voltaje
- Condensadores de calentamiento por inducción
- Condensadores de almacenamiento de energía y pulsos
- Condensadores de ENLACE CC
- Condensadores para circuitos AC/DC
- Go to the subcategory
- Filtros EMI
- Supercondensadores
-
Protección contra sobretensiones
- Protección contra sobretensiones para aplicaciones coaxiales
- Protección contra sobretensiones para sistemas de videovigilancia
- Protección contra sobretensiones para cableado de potencia
- Pararrayos para LED
- Descargadores de sobretensiones para energía fotovoltaica
- Protección del sistema de pesaje
- Protección contra sobretensiones para Fieldbus
- Go to the subcategory
- Go to the subcategory
-
Relés y contactores
- Teoría de relés y contactores
- Relés semiconductores de CA trifásicos
- Relés semiconductores de CA trifásicos
- Reguladores, controles y accesorios
- Arranques suaves y contactores de inversión
- Relés electromecánicos
- Contactores
- Interruptores giratorios
-
Relés semiconductores de CA monofásicos
- Relés semiconductores CA monofásicos, serie 1 | D2425 | D2450
- Relés semiconductores CA monofásicos, series CWA y CWD
- Relés semiconductores CA monofásicos de las series CMRA y CMRD
- Relés semiconductores de CA monofásicos, serie PS
- Relés semiconductores de CA dobles y cuádruples, serie D24 D, TD24 Q, H12D48 D
- Relés de estado sólido monofásicos, serie gn
- Relés semiconductores de ca monofásicos, serie ckr
- Relés AC monofásicos SERIE ERDA Y ERAA para carril DIN
- Relés AC monofásicos para corriente 150A
- Relés dobles de estado sólido integrados con disipador de calor para carril DIN
- Go to the subcategory
- Relés semiconductores CA monofásicos para PCB
- Relés de interfaz
- Go to the subcategory
- Núcleos y otros componentes inductivos
- Radiadores, varistores, protecciones térmicas
- Aficionados
- Aire Acondicionado, Accesorios para Armarios Eléctricos, Neveras
-
Baterías, cargadores, fuentes de alimentación de búfer e inversores
- Baterías, cargadores - descripción teórica
- Baterías de iones de litio. Baterías personalizadas. Sistema de gestión de batería (BMS)
- Pilas
- Cargadores de baterías y accesorios
- Fuente de alimentación de respaldo de UPS y fuentes de alimentación de búfer
- Convertidores y accesorios para fotovoltaica
- Almacen de energia
- Celdas de combustible
- Baterías de iones de litio
- Go to the subcategory
-
Automaticas
- Futaba Drone Parts
- Finales de carrera, microinterruptores
- Sensores, transductores
- Pirometría
- Contadores, temporizadores, medidores de panel
- Dispositivos de protección industrial
- Señalización luminosa y sonora
- Cámara termográfica
- Pantallas LED
- Botones e interruptores
-
Grabadores
- Grabadora AL3000
- Grabadora KR2000
- Grabadora KR5000
- Medidor HN-CH con función de registro de humedad y temperatura
- Consumibles para registradores
- Grabadora 71VR1
- Grabadora KR 3000
- Grabadores de PC de la serie R1M
- Grabadores de PC de la serie R2M
- Grabador de PC, 12 entradas aisladas - RZMS-U9
- Grabador de PC, USB, 12 entradas aisladas - RZUS
- Go to the subcategory
- Go to the subcategory
-
Cables, alambres Litz, conductos, conexiones flexibles
- alambres
- cables Litz
-
Cables para aplicaciones especiales
- Los cables de extensión y compensación
- Cables para termopares
- Los cables de conexión a PT czyjnków
- Multicore cables temp. -60 ° C a + 1400 ° C
- cables de media tensión SILICOUL
- ignición alambres
- Los cables calefactores
- temp núcleo único. -60 ° C a + 450 ° C
- conductores de trenes
- El calentamiento de los cables en el Ex
- Go to the subcategory
- camisas
-
trenzas
- trenzas planas
- trenzas ronda
- trenza muy flexible - plana
- trenza muy flexible - Ronda
- Copper cilíndrico trenzado
- Copper protector de la trenza y cilíndrica
- cintas de conexión flexibles
- Trenzas cilíndrico galvanizado y acero inoxidable
- Aislamiento de PVC trenzas de cobre - Temperatura 85 ° C
- aluminio trenzado plano
- Kit de conexión - trenzas y tubos
- Go to the subcategory
- Accesorios para la tracción
- Terminales de cable
- barras flexibles aisladas
- carril flexible multicapa
- sistemas de gestión de cables
- Conductos, tuberías
- Go to the subcategory
- View all categories
-
Semiconductores
-
-
- Suppliers
-
Applications
- Accionamientos de CA y CC (inversores)
- Automatización HVAC
- Automatización industrial
- Automatización industrial
- Calentamiento por inducción
- Componentes para atmósferas potencialmente explosivas (EX)
- Dispositivos de protección industrial
- Energy bank
- Equipos para Armarios de Distribución, Control y Telecomunicaciones
- Fuentes de alimentación (UPS) y sistemas rectificadores
- Impresión
- Máquinas de soldar y máquinas de soldar
- Máquinas herramientas CNC
- Máquinas para secar y procesar madera
- Máquinas para termoformado de plásticos
- Medición y regulación de temperatura
- Medición y regulación de temperatura
- Minería, metalurgia y fundación
- Motores y transformadores
- Tracción de tranvía y ferrocarril
-
Instalación
-
-
Montaż urządzeń
- Instalación de armarios
- Diseño y montaje de armarios
- Instalación de sistemas de energía
- Componentes
- Máquinas construidas por encargo
- Trabajo de investigación y desarrollo de I+D.
-
Probadores industriales
- Probadores de semiconductores de potencia
- Comprobadores de aparatos eléctricos
- Comprobadores de varistores y descargadores de sobretensiones
- Probador de fusibles automotriz
- Probador qrr para medir cargas transitorias en tiristores y diodos de potencia
- Comprobador de rotores de interruptores automáticos de la serie FD
- Comprobador de auditoría de dispositivos de corriente residual
- Probador de calibración de relés
- Probador de pruebas visuales de vástagos de resortes de gas
- Interruptor de tiristor de alta corriente
- Probador de rotura de malla
- Go to the subcategory
- View all categories
-
-
-
Inductores
-
-
Modernizacja induktorów
- Reparación de inductores usados
- Modernización de inductores
-
Producción de nuevos inductores.
- Endurecimiento de cigüeñales
- Endurecimiento de los dientes de la sierra de cinta
- Calentamiento de elementos antes de pegar
- Endurecimiento de pistas de rodadura de cojinetes de cubo de rueda de automoción
- Endurecimiento de los componentes de la transmisión motriz
- Endurecimiento de ejes escalonados
- Calentamiento en juntas de contracción
- Endurecimiento de escaneo
- Soldadura blanda
- Calentadores de palanquilla
- Go to the subcategory
- Base de conocimientos
- View all categories
-
-
-
Dispositivos de inducción
-
-
Urządzenia indukcyjne
-
Generadores de calentamiento por inducción
-
Generadores de calentamiento por inducción Ambrell
- Generadores: potencia 500 W, frecuencia 150-400 kHz
- Generadores: Potencia 1,2 - 2,4 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 4.2 - 10 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 10-15 kW, frecuencia 50-150 kHz
- Generadores: potencia 30-45 kW, frecuencia 50-150 kHz
- Generadores: potencia 65-135 kW, frecuencia 50-150 kHz
- Generadores: potencia 180-270 kW, frecuencia 50-150 kHz
- Generadores: potencia 20-35-50 kW, frecuencia 15-45 kHz
- Generadores: cнага 75-150 кВ, фреквенција 15-45 кХз
- Generadores: potencia 200-500 kW, frecuencia 15-45 kHz
- Generadores: potencia 20-50 kW, frecuencia 5-15 kHz
- Go to the subcategory
- Generadores de calentamiento por inducción Denki Kogyo
-
Generadores de calentamiento por inducción JKZ
- Generadores de la serie CX, frecuencia: 50-120kHz, potencia: 5-25kW
- Generadores de la serie SWS, frecuencia: 15-30kHz, potencia: 25-260kW
- Generadores (hornos) para conformar y forjar serie MFS, frecuencia: 0.5-10kHz, potencia: 80-500kW
- Hornos de fusión MFS, frecuencia: 0,5-10 kHz, potencia: 70-200 kW
- Generadores de la serie UHT, frecuencia: 200-400kHz, potencia: 10-160kW
- Go to the subcategory
- Generadores de lámparas para calentamiento por inducción
- Generadores de calentamiento por inducción Himmelwerk
- Go to the subcategory
-
Generadores de calentamiento por inducción Ambrell
- Reparaciones y modernización
- Periféricos
-
Aplicaciones
- Aplicaciones médicas
- Aplicaciones para la industria automotriz
- Soldadura blanda
- Soldadura
- Soldadura fuerte de aluminio
- Soldadura de herramientas magnéticas de acero inoxidable
- Soldadura de precisión
- Soldadura fuerte en atmósfera protectora
- Soldadura de tapas de disipadores de calor de latón y acero
- Soldadura de carburos sinterizados
- Soldar la punta de cobre y el cable
- Go to the subcategory
- Base de conocimientos
- View all categories
-
Generadores de calentamiento por inducción
-
-
-
Servicio
-
-
asd
- Servicio de enfriadores de agua y aires acondicionados industriales
- Reparaciones y modernización de máquinas
-
Reparaciones de electrónica de potencia, electrónica y dispositivos de automatización
- Servicio de inversores, servoaccionamientos y reguladores DC
- Servicio de inversores fotovoltaicos
- Servicio de rectificadores de galvanoplastia FLEXKRAFT
- Oferta de reparación de equipos
- Lista de dispositivos reparados
- Reparación de máquinas de laminado de billetes
- Normativa para la reparación de dispositivos.
- Go to the subcategory
- Fuentes de alimentación de alto voltaje para precipitadores electrostáticos
- Impresoras y etiquetadoras industriales
- Certificates / Entitlements
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8
Designing devices with Electromagnetic Compatibility (EMC) in mind is a crucial aspect that allows minimizing electromagnetic interference and ensuring reliable and standards-compliant operation of electronic devices.
Here are some essential points to consider when designing devices with EMC in mind:
Proper component placement: Thoughtful arrangement of components inside the device significantly influences electromagnetic emissions and susceptibility to interference. It is important to avoid placing elements with different electromagnetic characteristics close to each other and ensure adequate isolation between them. Proper component placement helps minimize cross-coupling of electromagnetic disturbances.
Application of shielding: Employing shielding in device design is essential for limiting emissions and minimizing susceptibility to electromagnetic interference. Shielding can involve the use of appropriate shielded enclosures, shielding of cables, printed circuit board layouts, or the application of protective layers in circuits. Adequate shielding helps protect sensitive signals from interference and reduces the impact of emissions on the environment.
Appropriate circuit layout and conduction: Designing devices with EMC in mind also includes proper circuit layout and conduction. Careful design of signal paths, the use of suitable EMC filters, ground separation, and the minimization of current loops contribute to reducing emissions and increasing resistance to interference. Additionally, appropriate conduction in circuits, such as using properly sized power and ground wires, helps minimize losses and unwanted electromagnetic effects.
Selection of appropriate components: The choice of suitable components significantly affects EMC performance. Components should comply well with EMC standards to minimize emissions and ensure high immunity to interference. Therefore, it is essential to select components from reputable manufacturers that meet the appropriate EMC standards.
Testing and verification: During the design of electronic devices with EMC in mind, conducting tests and verification at the design stage is crucial. Testing for electromagnetic emissions and susceptibility allows identifying issues and resolving them early. Verification for compliance with EMC standards and assessing device performance in controlled conditions ensures that the device will operate correctly and comply with EMC requirements.
Designing devices with Electromagnetic Compatibility (EMC) in mind is critical for minimizing electromagnetic interference, ensuring reliable operation, and complying with normative requirements. Proper component placement, shielding, appropriate circuit layout, selection of suitable components, testing, and verification are essential steps in achieving effective electromagnetic compatibility of devices.
Choosing appropriate components and materials is crucial for designing and manufacturing high-quality, reliable, and efficient electronic devices.
Properly chosen components and materials significantly impact the device's performance, durability, resistance to electromagnetic interference, and compliance with safety norms and regulations. Here are some important factors to consider when selecting components and materials:
Quality and reliability: Selecting components from reputable manufacturers known for high quality and reliability is crucial for ensuring device durability and reliability. Components should meet appropriate standards and come with the manufacturer's warranty and relevant certifications.
Compliance with EMC norms: Components should comply with Electromagnetic Compatibility (EMC) norms to minimize electromagnetic emissions and ensure high immunity to interference. It is essential to test components for emissions and susceptibility to interference and ensure they meet the required electromagnetic parameters.
Technical parameters: When choosing components, technical parameters such as voltage, current, frequency, operating temperature, lifetime, efficiency, and tolerances must be taken into account. Components should be appropriately matched to the project requirements and meet the specified parameters.
Resistance to environmental conditions: Depending on the device's application, components should be resistant to environmental conditions such as humidity, extreme temperatures, vibrations, or dust. Selecting components with appropriate environmental specifications helps ensure device reliability and durability under various operating conditions.
Use of eco-friendly materials: In the context of sustainable development, more attention is given to choosing eco-friendly materials. Opting for components and materials that are free from harmful substances and have minimal impact on the natural environment contributes to creating more sustainable electronic devices.
Availability and costs: When selecting components, their availability on the market and costs should be taken into account. Components should be available in suitable quantities and within required timelines to avoid delays in the production process. At the same time, considering component costs is essential for maintaining competitive pricing of devices.
Choosing appropriate components and materials is critical for the quality, reliability, and compliance of electronic devices. Properly chosen components that meet EMC standards, high quality, technical parameters, resistance to environmental conditions, eco-friendly materials, availability, and costs are significant factors to consider during the design and production of electronic devices.
Proper arrangement of cables and wires in electronic devices is essential for ensuring Electromagnetic Compatibility (EMC) and minimizing electromagnetic interference.
Incorrect cable arrangement can lead to interference emissions, affect signal quality, and increase device susceptibility to external interference. Here are some important factors to consider for proper cable and wire arrangement:
Separation of signals and power: Maintaining appropriate separation between signals and power cables is important. Separating signal cables from power cables helps avoid electromagnetic interference. Additionally, it is important to avoid running high-frequency signals in parallel with power cables, as it may induce interference.
Avoiding current loops: Current loops can affect electromagnetic emissions and susceptibility to interference. During cable arrangement, it is essential to avoid creating current loops that may lead to increased electromagnetic interference. Short and straight connections between elements should be prioritized to minimize cable length.
Shielding and grounding: For signal cables, the application of shielding can help reduce electromagnetic interference. Shielding cables protect signals from external interference. Proper grounding of shields and metal elements is also crucial for effectively draining electromagnetic interference.
Minimizing cable length: Excessively long cables can lead to increased emissions and susceptibility to electromagnetic interference. Therefore, minimizing cable length is crucial whenever possible. Shorter cables reduce the area where electromagnetic interference can be generated and spread.
Proper routing and securing of cables: Cables and wires should be appropriately routed and secured inside the device. Avoiding unnecessary twists, sharp bends, and tension in the cable helps maintain signal integrity and minimize the risk of damages and interference. Using appropriate insulations: Cables and wires should be adequately insulated to avoid distortions and interference. Proper insulation ensures protection against signal leakage, prevents shorts, and minimizes the risk of generating electromagnetic interference.
Proper arrangement of cables and wires is incredibly important for ensuring Electromagnetic Compatibility (EMC) in electronic devices. Separating signals from power, avoiding current loops, shielding and grounding, minimizing cable length, proper routing and securing of cables, and using appropriate insulation are essential factors to consider during device design and production. Proper cable arrangement contributes to minimizing electromagnetic interference, ensuring reliable and efficient operation of electronic devices.
Managing Electromagnetic Interference (EMI) is a significant element of electronic device design and production.
There are several strategies and techniques that can be applied to minimize the impact of electromagnetic interference on devices. Here are a few examples of EMI management strategies:
Designing EMI filters: EMI filters are used to reduce unwanted electromagnetic interference. They can be pass-through, suppressive, or combined filters that eliminate or limit electromagnetic interference within a specific frequency range. Designing and implementing appropriate EMI filters help minimize emissions and ensure adequate resistance to interference.
Shielding and shielded enclosures: Shielding is a technique that helps protect against electromagnetic interference. Using shielding in the form of suitable shielded enclosures, shielding of cables and printed circuit boards helps limit emissions and increase resistance to electromagnetic interference. Proper design and grounding of shields are crucial for effective shielding.
Arrangement of wires and cables: Properly arranging wires and cables in electronic devices is essential for minimizing electromagnetic interference. Separation of signals from power, minimizing cable length, avoiding current loops, and appropriate routing and securing of cables contribute to reducing emissions and increasing resistance to interference.
Designing printed circuit boards: Properly designing printed circuit boards (PCBs) is crucial for managing electromagnetic interference. Correct placement of components, signal traces, and grounding, minimizing current loops, and applying appropriate protective layers and ground planes help reduce electromagnetic interference.
Proper grounding: Proper grounding is extremely important for managing electromagnetic interference. Adequate grounding of shields, metal elements, power, and ground wires helps effectively dissipate electromagnetic interference and minimize its impact on devices.
Testing and verification: Conducting emission and susceptibility tests for electromagnetic interference during the design and production stages is an essential part of EMI management. Testing helps identify potential issues related to electromagnetic interference and allows for necessary modifications to meet EMC requirements.
Electromagnetic Interference (EMI) management strategies are essential to ensure proper functioning and compliance of electronic devices with EMC requirements. Proper design of EMI filters, shielding, cable and wire arrangement, PCB design, effective grounding, testing, and verification are examples of strategies that can be employed to minimize the impact of electromagnetic interference on devices.
Deja un comentario