Debes estar logueado
-
moreX
-
Componentes
-
-
Category
-
Semiconductores
- Diodos
- Tiristores
-
Módulos con aislamiento eléctrico
- Módulos con aislamiento eléctrico | VISHAY (IR)
- Módulos con aislamiento eléctrico | INFINEON (EUPEC)
- Módulos con aislamiento eléctrico | Semikron
- Módulos con aislamiento eléctrico | POWEREX
- Módulos con aislamiento eléctrico | IXYS
- Módulos con aislamiento eléctrico | POSEICO
- Módulos con aislamiento eléctrico | ABB
- Módulos con aislamiento eléctrico | TECHSEM
- Go to the subcategory
- Rectificadores de puente
-
Transistores
- Transistores | GeneSiC
- Módulos SiC MOSFET | Mitsubishi
- Módulos SiC MOSFET | STARPOWER
- Módulos ABB SiC MOSFET
- Módulos IGBT | MITSUBISHI
- Módulos de transistores | MITSUBISHI
- Módulos MOSFET | MITSUBISHI
- Módulos de transistores | ABB
- Módulos IGBT | POWEREX
- Módulos IGBT | INFINEON (EUPEC)
- Elementos semiconductores de carburo de silicio (SiC)
- Go to the subcategory
- Controladores de puerta
- Bloques de energía
- Go to the subcategory
-
Convertidores de corriente y tensión LEM
-
Transductores de corriente | LEM
- Transductor de corriente con bucle de retroalimentación cerrado (C / L)
- Transductor de corriente con bucle de retroalimentación abierto (O / L)
- Transductor de corriente alimentado por voltaje unipolar
- Transductores en tecnología Eta
- Transductores de corriente de alta precisión serie LF xx10
- Transductores de corriente de la serie LH
- HOYS y HOYL: dedicados para el montaje directamente en un riel conductor
- Convertidores de corriente en la tecnología SMD de las series GO-SME y GO-SMS
- Transductores de corriente AUTOMOCIÓN
- Go to the subcategory
-
Transductores de voltaje | LEM
- Convertidores de voltaje de la serie LV
- Convertidores de voltaje de la serie DVS
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de tensión de precisión con doble núcleo magnético serie CV
- Convertidores de voltaje de la serie DVM
- Transductor de voltaje - DVC 1000-P
- Transductores de voltaje - Serie DVC 1000
- Go to the subcategory
- Transductores de corriente de precisión | LEM
- Go to the subcategory
-
Transductores de corriente | LEM
-
Componentes pasivos (condensadores, resistencias, fusibles, filtros)
- Resistencias
-
Fusibles
- Fusibles miniatura para circuitos electrónicos, serie ABC y AGC
- Fusibles tubulares de acción rápida
- Eslabones fusibles de retardo de tiempo con características GL / GG y AM
- Eslabones fusibles ultrarrápidos
- Fusibles de acción rápida (estándar británico y estadounidense)
- Fusibles de acción rápida (estándar europeo)
- Fusibles de tracción
- Eslabones fusibles de alto voltaje
- Go to the subcategory
-
Condensadores
- Condensadores de motor
- Condensadores electrolíticos
- Condensadores de película
- Condensadores de potencia
- Condensadores para circuitos de CC
- Condensadores de corrección del factor de potencia
- Condensadores de alto voltaje
- Condensadores de calentamiento por inducción
- Condensadores de almacenamiento de energía y pulsos
- Condensadores de ENLACE CC
- Condensadores para circuitos AC/DC
- Go to the subcategory
- Filtros EMI
- Supercondensadores
-
Protección contra sobretensiones
- Protección contra sobretensiones para aplicaciones coaxiales
- Protección contra sobretensiones para sistemas de videovigilancia
- Protección contra sobretensiones para cableado de potencia
- Pararrayos para LED
- Descargadores de sobretensiones para energía fotovoltaica
- Protección del sistema de pesaje
- Protección contra sobretensiones para Fieldbus
- Go to the subcategory
- Go to the subcategory
-
Relés y contactores
- Teoría de relés y contactores
- Relés semiconductores de CA trifásicos
- Relés semiconductores de CA trifásicos
- Reguladores, controles y accesorios
- Arranques suaves y contactores de inversión
- Relés electromecánicos
- Contactores
- Interruptores giratorios
-
Relés semiconductores de CA monofásicos
- Relés semiconductores CA monofásicos, serie 1 | D2425 | D2450
- Relés semiconductores CA monofásicos, series CWA y CWD
- Relés semiconductores CA monofásicos de las series CMRA y CMRD
- Relés semiconductores de CA monofásicos, serie PS
- Relés semiconductores de CA dobles y cuádruples, serie D24 D, TD24 Q, H12D48 D
- Relés de estado sólido monofásicos, serie gn
- Relés semiconductores de ca monofásicos, serie ckr
- Relés AC monofásicos SERIE ERDA Y ERAA para carril DIN
- Relés AC monofásicos para corriente 150A
- Relés dobles de estado sólido integrados con disipador de calor para carril DIN
- Go to the subcategory
- Relés semiconductores CA monofásicos para PCB
- Relés de interfaz
- Go to the subcategory
- Núcleos y otros componentes inductivos
- Radiadores, varistores, protecciones térmicas
- Aficionados
- Aire Acondicionado, Accesorios para Armarios Eléctricos, Neveras
-
Baterías, cargadores, fuentes de alimentación de búfer e inversores
- Baterías, cargadores - descripción teórica
- Baterías de iones de litio. Baterías personalizadas. Sistema de gestión de batería (BMS)
- Pilas
- Cargadores de baterías y accesorios
- Fuente de alimentación de respaldo de UPS y fuentes de alimentación de búfer
- Convertidores y accesorios para fotovoltaica
- Almacen de energia
- Celdas de combustible
- Baterías de iones de litio
- Go to the subcategory
-
Automaticas
- Futaba Drone Parts
- Finales de carrera, microinterruptores
- Sensores, transductores
- Pirometría
- Contadores, temporizadores, medidores de panel
- Dispositivos de protección industrial
- Señalización luminosa y sonora
- Cámara termográfica
- Pantallas LED
- Botones e interruptores
-
Grabadores
- Grabadora AL3000
- Grabadora KR2000
- Grabadora KR5000
- Medidor HN-CH con función de registro de humedad y temperatura
- Consumibles para registradores
- Grabadora 71VR1
- Grabadora KR 3000
- Grabadores de PC de la serie R1M
- Grabadores de PC de la serie R2M
- Grabador de PC, 12 entradas aisladas - RZMS-U9
- Grabador de PC, USB, 12 entradas aisladas - RZUS
- Go to the subcategory
- Go to the subcategory
-
Cables, alambres Litz, conductos, conexiones flexibles
- alambres
- cables Litz
-
Cables para aplicaciones especiales
- Los cables de extensión y compensación
- Cables para termopares
- Los cables de conexión a PT czyjnków
- Multicore cables temp. -60 ° C a + 1400 ° C
- cables de media tensión SILICOUL
- ignición alambres
- Los cables calefactores
- temp núcleo único. -60 ° C a + 450 ° C
- conductores de trenes
- El calentamiento de los cables en el Ex
- Go to the subcategory
- camisas
-
trenzas
- trenzas planas
- trenzas ronda
- trenza muy flexible - plana
- trenza muy flexible - Ronda
- Copper cilíndrico trenzado
- Copper protector de la trenza y cilíndrica
- cintas de conexión flexibles
- Trenzas cilíndrico galvanizado y acero inoxidable
- Aislamiento de PVC trenzas de cobre - Temperatura 85 ° C
- aluminio trenzado plano
- Kit de conexión - trenzas y tubos
- Go to the subcategory
- Accesorios para la tracción
- Terminales de cable
- barras flexibles aisladas
- carril flexible multicapa
- sistemas de gestión de cables
- Conductos, tuberías
- Go to the subcategory
- View all categories
-
Semiconductores
-
-
- Suppliers
-
Applications
- Accionamientos de CA y CC (inversores)
- Automatización HVAC
- Automatización industrial
- Automatización industrial
- Calentamiento por inducción
- Componentes para atmósferas potencialmente explosivas (EX)
- Dispositivos de protección industrial
- Energy bank
- Equipos para Armarios de Distribución, Control y Telecomunicaciones
- Fuentes de alimentación (UPS) y sistemas rectificadores
- Impresión
- Máquinas de soldar y máquinas de soldar
- Máquinas herramientas CNC
- Máquinas para secar y procesar madera
- Máquinas para termoformado de plásticos
- Medición y regulación de temperatura
- Medición y regulación de temperatura
- Minería, metalurgia y fundación
- Motores y transformadores
- Tracción de tranvía y ferrocarril
-
Instalación
-
-
Montaż urządzeń
- Instalación de armarios
- Diseño y montaje de armarios
- Instalación de sistemas de energía
- Componentes
- Máquinas construidas por encargo
- Trabajo de investigación y desarrollo de I+D.
-
Probadores industriales
- Probadores de semiconductores de potencia
- Comprobadores de aparatos eléctricos
- Comprobadores de varistores y descargadores de sobretensiones
- Probador de fusibles automotriz
- Probador qrr para medir cargas transitorias en tiristores y diodos de potencia
- Comprobador de rotores de interruptores automáticos de la serie FD
- Comprobador de auditoría de dispositivos de corriente residual
- Probador de calibración de relés
- Probador de pruebas visuales de vástagos de resortes de gas
- Interruptor de tiristor de alta corriente
- Probador de rotura de malla
- Go to the subcategory
- View all categories
-
-
-
Inductores
-
-
Modernizacja induktorów
- Reparación de inductores usados
- Modernización de inductores
-
Producción de nuevos inductores.
- Endurecimiento de cigüeñales
- Endurecimiento de los dientes de la sierra de cinta
- Calentamiento de elementos antes de pegar
- Endurecimiento de pistas de rodadura de cojinetes de cubo de rueda de automoción
- Endurecimiento de los componentes de la transmisión motriz
- Endurecimiento de ejes escalonados
- Calentamiento en juntas de contracción
- Endurecimiento de escaneo
- Soldadura blanda
- Calentadores de palanquilla
- Go to the subcategory
- Base de conocimientos
- View all categories
-
-
-
Dispositivos de inducción
-
-
Urządzenia indukcyjne
-
Generadores de calentamiento por inducción
-
Generadores de calentamiento por inducción Ambrell
- Generadores: potencia 500 W, frecuencia 150-400 kHz
- Generadores: Potencia 1,2 - 2,4 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 4.2 - 10 kW, frecuencia 150 - 400 kHz
- Generadores: potencia 10-15 kW, frecuencia 50-150 kHz
- Generadores: potencia 30-45 kW, frecuencia 50-150 kHz
- Generadores: potencia 65-135 kW, frecuencia 50-150 kHz
- Generadores: potencia 180-270 kW, frecuencia 50-150 kHz
- Generadores: potencia 20-35-50 kW, frecuencia 15-45 kHz
- Generadores: cнага 75-150 кВ, фреквенција 15-45 кХз
- Generadores: potencia 200-500 kW, frecuencia 15-45 kHz
- Generadores: potencia 20-50 kW, frecuencia 5-15 kHz
- Go to the subcategory
- Generadores de calentamiento por inducción Denki Kogyo
-
Generadores de calentamiento por inducción JKZ
- Generadores de la serie CX, frecuencia: 50-120kHz, potencia: 5-25kW
- Generadores de la serie SWS, frecuencia: 15-30kHz, potencia: 25-260kW
- Generadores (hornos) para conformar y forjar serie MFS, frecuencia: 0.5-10kHz, potencia: 80-500kW
- Hornos de fusión MFS, frecuencia: 0,5-10 kHz, potencia: 70-200 kW
- Generadores de la serie UHT, frecuencia: 200-400kHz, potencia: 10-160kW
- Go to the subcategory
- Generadores de lámparas para calentamiento por inducción
- Generadores de calentamiento por inducción Himmelwerk
- Go to the subcategory
-
Generadores de calentamiento por inducción Ambrell
- Reparaciones y modernización
- Periféricos
-
Aplicaciones
- Aplicaciones médicas
- Aplicaciones para la industria automotriz
- Soldadura blanda
- Soldadura
- Soldadura fuerte de aluminio
- Soldadura de herramientas magnéticas de acero inoxidable
- Soldadura de precisión
- Soldadura fuerte en atmósfera protectora
- Soldadura de tapas de disipadores de calor de latón y acero
- Soldadura de carburos sinterizados
- Soldar la punta de cobre y el cable
- Go to the subcategory
- Base de conocimientos
- View all categories
-
Generadores de calentamiento por inducción
-
-
-
Servicio
-
-
asd
- Servicio de enfriadores de agua y aires acondicionados industriales
- Reparaciones y modernización de máquinas
-
Reparaciones de electrónica de potencia, electrónica y dispositivos de automatización
- Servicio de inversores, servoaccionamientos y reguladores DC
- Servicio de inversores fotovoltaicos
- Servicio de rectificadores de galvanoplastia FLEXKRAFT
- Oferta de reparación de equipos
- Lista de dispositivos reparados
- Reparación de máquinas de laminado de billetes
- Normativa para la reparación de dispositivos.
- Go to the subcategory
- Fuentes de alimentación de alto voltaje para precipitadores electrostáticos
- Impresoras y etiquetadoras industriales
- Certificates / Entitlements
- View all categories
-
-
- Contact
- Zobacz wszystkie kategorie
Las fotos son solo para fines informativos. Ver especificaciones de producto
please use latin characters
INTRODUCCIÓN - RELÉS Y CONTACTORES
Solid State Relays
Solid State Relays (SSRs) are components used to control the current load using a semiconductor controlled by a separated electronic circuit. Galvanic separation takes place by means of an optoelectronic element such as a diode emitting infrared radiation, a photodiode, phototransistor, photothyristor or phototriac. In the rest state of the relay, when no current flows through the LED in the input circuit, the optoelectronic element remains switched off and its surrogate resistance is very large. After activating the diode, the photoelement is irradiated and it starts to conduct the switching load circuit. Such a solution allows to significantly increase the switching off frequency, eliminates the phenomenon of electric arc and enables to obtain a lifetime of 109.
Block diagram of a Solid State Relay
Depending on the type, the relay may be switched on by supplying the DC input voltage (from 3V to 32V) or alternating voltage (from 90V to 280V at 50Hz) to the input circuit. There is also the possibility of triggering the relay current. Depending on the purpose, they are built to switch on constant and alternating currents. There are also three-phase relays used, for example, for switching three-phase electric motors.
Types and application
Relays switching on at "zero" voltage – conduction occurs when the supply voltage is zero. Thanks to such a solution, it gradually builds up without causing radio interference. Used to control inductive and resistive loads (resistance heaters, bulbs). | |
Relays switching on "immediately" – the moment of switching on takes place immediately after applying the control voltage. This type of control is intended for solutions where a short response time is required. | |
Relays switching on the voltage at the "peak" - the relay is activated when the peak power supply voltage is reached. Used for strongly inductive loads (transformers). | |
Analog switching relays – controlled by an analog signal (0-10V DC or 4-20mA DC). Used for smooth control of light intensity, heating, etc. |
Parameters characterizing Solid State Relays:
Input circuit:
- control voltage range - voltage range supplied to the input, in which the relay remains switched on (eg: 3-32VDC, 9-280VAC),
- input current range - determines the maximum input current for the relay on and off state,
- switch-on and switch-off time - time elapsed since the control signal is supplied / disconnected to the full enable/disable of the relay.
Output circuit:
- load voltage range - voltage range supplied to the output terminals,
- maximum voltage - maximum permissible value of overvoltage in the power supply network that does not damage the relay,
- load current - maximum permissible value of current flowing in the output circuit,
- maximum unique overload current - maximum value of the current pulse with the duration of one half of the sinusoid,
- maximum I2 t - Joula integral value, used in the selection of fuses.
Useful parameters:
- insulation voltage – effective value of the mains voltage which can occur between the input and output terminals of the relay,
- insulation resistance – the minimum value of the resistance measured using a 500V constant current signal,
- capacity between input and output – measured between input and output terminals,
- ambient temperature range during operation.
Relay cooling
The lifetime of Solid State Relay is virtually unlimited, provided that they are properly cooled. Therefore, special attention should be paid to the selection of the heat sink, use thermal grease and ensure adequate air circulation. A good solution is to mount the relay with a heat sink on the DIN rail, leaving around free space.
Relay protection
Another important thing is protection against the effects of a short circuit or overload. Time-saving fuses can not protect Solid State Relays, therefore, for proper protection, ultra-fast fuses should be used, whose Joule integral is smaller than the value of the semiconductor integral. For full protection of the relay, a varistor for overvoltage protection should be connected at the output.
Electromechanical relays
The principle of operation of electromagnetic relays is similar to the principle of operation of an electromagnetic contactor. The relay contacts have a relatively low load capacity, in the order of a few amperes. Therefore, the relay is equipped with a much smaller electromagnet than the contactor, and the contacts do not have additional arc supression devices.
The relay's dimensions are smaller than the contactor's dimensions, while the relay's durability is very high and reaches several dozen million connections. Depending on the purpose, relays have one or more pairs of contacts. They can operate under the influence of changes in current, voltage, direction of current flow, frequency, phase shift, etc. The principle of the relay operation is explained in the figure:
The flow of current through the coil winding causes the attraction of the armature. When the armature is pulled, the contacts close: (1), (2), (3) and open break contacts (4). After disconnecting the voltage and dropping the armature, the following contacts open: (1), (2), (3) and close the break contact (4). In the most common construction solutions of relays, the coil voltage is 230VAC or 24VDC, operating current of contacts - from 1 to 10A, the number of contacts - from one to four switching pairs.
Contactors
The contactor is a switch whose operating contacts are closed by means of an electromagnet and kept in this state until the coil voltage is high enough. After breaking the circuit of the electromagnet coil, the armature falls (under the influence of the spring) and the working contacts open.
The construction and operation of contactors are similar to the construction and operation of electromagnetic relays. The difference is that contactors are used to connect main circuits (e.g. motors), while electromagnetic relays have the task of connecting auxiliary circuits (e.g. control, signaling). In addition to the main contacts, the contactors may have several auxiliary contacts for signaling or blocking. The principle of the contactor operation is explained in the figure:
Under the influence of the current flowing through the contactor S coil, a force is created that attracts the armature K, which causes shorting of the main contacts Z1, Z2, Z3 and auxiliary contacts z1, z2. The contactors are mainly designed for remote connection of three-phase AC circuits in conditions specified by the use category AC3 and AC4 (connection of squirrel-cage motors). They can also be used to connect ring motors (category AC2) or heating devices (category AC1).
In addition to AC contactors, DC contactors are also available. They have an electromagnet or pneumatic drive, with both electromagnets and solenoid valves controlled by direct current. The main applications of these contactors are rail, tram and battery traction (trolleys).
The contactors offered by DACPOL are available for AC coils in the power range from 1.5 to 238kW and DC coils in the power range from 2.2 to 11kW. The instrumentation covers a wide range of auxiliary contacts and time-delay relays, interface modules and RC elements. Optionally, you can also mount thermal relays to protect electric motors.
Envíe una consulta
¿Estás interesado en este producto? ¿Necesita información adicional o precios individuales?
Contacta con nosotras
Usted debe estar conectado
Solid State Relays
Solid State Relays (SSRs) are components used to control the current load using a semiconductor controlled by a separated electronic circuit. Galvanic separation takes place by means of an optoelectronic element such as a diode emitting infrared radiation, a photodiode, phototransistor, photothyristor or phototriac. In the rest state of the relay, when no current flows through the LED in the input circuit, the optoelectronic element remains switched off and its surrogate resistance is very large. After activating the diode, the photoelement is irradiated and it starts to conduct the switching load circuit. Such a solution allows to significantly increase the switching off frequency, eliminates the phenomenon of electric arc and enables to obtain a lifetime of 109.
Block diagram of a Solid State Relay
Depending on the type, the relay may be switched on by supplying the DC input voltage (from 3V to 32V) or alternating voltage (from 90V to 280V at 50Hz) to the input circuit. There is also the possibility of triggering the relay current. Depending on the purpose, they are built to switch on constant and alternating currents. There are also three-phase relays used, for example, for switching three-phase electric motors.
Types and application
Relays switching on at "zero" voltage – conduction occurs when the supply voltage is zero. Thanks to such a solution, it gradually builds up without causing radio interference. Used to control inductive and resistive loads (resistance heaters, bulbs). | |
Relays switching on "immediately" – the moment of switching on takes place immediately after applying the control voltage. This type of control is intended for solutions where a short response time is required. | |
Relays switching on the voltage at the "peak" - the relay is activated when the peak power supply voltage is reached. Used for strongly inductive loads (transformers). | |
Analog switching relays – controlled by an analog signal (0-10V DC or 4-20mA DC). Used for smooth control of light intensity, heating, etc. |
Parameters characterizing Solid State Relays:
Input circuit:
- control voltage range - voltage range supplied to the input, in which the relay remains switched on (eg: 3-32VDC, 9-280VAC),
- input current range - determines the maximum input current for the relay on and off state,
- switch-on and switch-off time - time elapsed since the control signal is supplied / disconnected to the full enable/disable of the relay.
Output circuit:
- load voltage range - voltage range supplied to the output terminals,
- maximum voltage - maximum permissible value of overvoltage in the power supply network that does not damage the relay,
- load current - maximum permissible value of current flowing in the output circuit,
- maximum unique overload current - maximum value of the current pulse with the duration of one half of the sinusoid,
- maximum I2 t - Joula integral value, used in the selection of fuses.
Useful parameters:
- insulation voltage – effective value of the mains voltage which can occur between the input and output terminals of the relay,
- insulation resistance – the minimum value of the resistance measured using a 500V constant current signal,
- capacity between input and output – measured between input and output terminals,
- ambient temperature range during operation.
Relay cooling
The lifetime of Solid State Relay is virtually unlimited, provided that they are properly cooled. Therefore, special attention should be paid to the selection of the heat sink, use thermal grease and ensure adequate air circulation. A good solution is to mount the relay with a heat sink on the DIN rail, leaving around free space.
Relay protection
Another important thing is protection against the effects of a short circuit or overload. Time-saving fuses can not protect Solid State Relays, therefore, for proper protection, ultra-fast fuses should be used, whose Joule integral is smaller than the value of the semiconductor integral. For full protection of the relay, a varistor for overvoltage protection should be connected at the output.
Electromechanical relays
The principle of operation of electromagnetic relays is similar to the principle of operation of an electromagnetic contactor. The relay contacts have a relatively low load capacity, in the order of a few amperes. Therefore, the relay is equipped with a much smaller electromagnet than the contactor, and the contacts do not have additional arc supression devices.
The relay's dimensions are smaller than the contactor's dimensions, while the relay's durability is very high and reaches several dozen million connections. Depending on the purpose, relays have one or more pairs of contacts. They can operate under the influence of changes in current, voltage, direction of current flow, frequency, phase shift, etc. The principle of the relay operation is explained in the figure:
The flow of current through the coil winding causes the attraction of the armature. When the armature is pulled, the contacts close: (1), (2), (3) and open break contacts (4). After disconnecting the voltage and dropping the armature, the following contacts open: (1), (2), (3) and close the break contact (4). In the most common construction solutions of relays, the coil voltage is 230VAC or 24VDC, operating current of contacts - from 1 to 10A, the number of contacts - from one to four switching pairs.
Contactors
The contactor is a switch whose operating contacts are closed by means of an electromagnet and kept in this state until the coil voltage is high enough. After breaking the circuit of the electromagnet coil, the armature falls (under the influence of the spring) and the working contacts open.
The construction and operation of contactors are similar to the construction and operation of electromagnetic relays. The difference is that contactors are used to connect main circuits (e.g. motors), while electromagnetic relays have the task of connecting auxiliary circuits (e.g. control, signaling). In addition to the main contacts, the contactors may have several auxiliary contacts for signaling or blocking. The principle of the contactor operation is explained in the figure:
Under the influence of the current flowing through the contactor S coil, a force is created that attracts the armature K, which causes shorting of the main contacts Z1, Z2, Z3 and auxiliary contacts z1, z2. The contactors are mainly designed for remote connection of three-phase AC circuits in conditions specified by the use category AC3 and AC4 (connection of squirrel-cage motors). They can also be used to connect ring motors (category AC2) or heating devices (category AC1).
In addition to AC contactors, DC contactors are also available. They have an electromagnet or pneumatic drive, with both electromagnets and solenoid valves controlled by direct current. The main applications of these contactors are rail, tram and battery traction (trolleys).
The contactors offered by DACPOL are available for AC coils in the power range from 1.5 to 238kW and DC coils in the power range from 2.2 to 11kW. The instrumentation covers a wide range of auxiliary contacts and time-delay relays, interface modules and RC elements. Optionally, you can also mount thermal relays to protect electric motors.
Su agradecimiento a la reseña no pudo ser enviado
Reportar comentario
Reporte enviado
Su reporte no pudo ser enviado
Escriba su propia reseña
Reseña enviada
Su reseña no pudo ser enviada