Vous devez être connecté
-
revenirX
-
Composants
-
-
Category
-
Semi-conducteurs
- La diode
- Les thyristors
- Modules de puissance isolés
- Ponts redresseurs
-
Transistors
- Transistors | GeneSiC
- Modules MOSFET SiC | Mitsubishi
- Modules MOSFET SiC | STARPOWER
- Modules MOSFET SiC ABB
- Modules IGBT | MITSUBISHI
- Modules de transistors | MITSUBISHI
- Modules MOSFET | MITSUBISHI
- Modules de transistors | ABB
- Modules IGBT | POWEREX
- Modules IGBT | INFINEON (EUPEC)
- Composants semiconducteurs en carbure de silicium
- Aller à la sous-catégorie
- Circuits de commande
- Blocs de puissance
- Aller à la sous-catégorie
-
Transducteurs électriques
-
Transducteurs de courant LEM
- Transducteur de courant avec boucle de retour fermée (C/L)
- Transducteur de courant avec boucle de retour ouverte (O/L)
- Transducteur de courant alimenté en tension unipolaire
- Transducteurs en technologie Eta
- Transducteurs de courant de haute précision série LF xx10
- Transducteurs de courant série LH
- HOYS i HOYL – dédié au montage directement sur le jeu de barres
- Transducteurs de courant en technologie SMD série GO-SME et GO-SMS
- Capteurs de courant AUTOMOBILE
- Aller à la sous-catégorie
-
Transducteurs de tension | LEM
- Transducteurs de tension série LV
- Transducteurs de tension série DVL
- Transducteurs de tension de précision à double noyau magnétique CV
- Transducteur de tension de traction DV 4200/SP4
- Transducteurs de tension série DVM
- Transducteurs de tension DVC 1000-P
- Transducteurs de tension - Série DVC 1000
- Aller à la sous-catégorie
- Transducteurs de courant de précision | LEM
- Aller à la sous-catégorie
-
Transducteurs de courant LEM
-
Composants passifs (condensateurs, résistances, fusibles, filtres)
- Résistances
-
Fusibles
- Fusibles miniatures pour c.imp. série ABC et AGC
- Fusible rapides tubulaires
- Cartouches de courbe GL/GG et AM
- Cartouches ultrarapides
- Fusibles à action rapide (norme britannique et américaine)
- Fusibles à action rapide (norme européenne)
- Fusibles de traction
- Cartouche de haute tension
- Aller à la sous-catégorie
-
Condensateurs
- Condensateurs pour moteurs
- Condensateurs électrolitiques
- Condensateurs de type snubbers
- Condensateurs de puissance
- Condensateurs pour circuits continus
- Condensateurs de compensation de puissance
- Condensateurs de haute tension
- Condensateurs pour chauffage par induction
- Condensateurs pour impulsions
- Condensateurs DC LINK
- Condensateurs pour circuits AC/DC
- Aller à la sous-catégorie
- Filtres anti-interférences
- Supercondensateurs
-
Protection contre les surtensions
- Protection contre les surtensions pour les applications coaxiales
- Protection contre les surtensions pour les systèmes de vidéosurveillance
- Parafoudres de ligne électrique
- Protection contre surtensions pour LED
- Parafoudres pour le photovoltaïque
- Protection du système de pesage
- Protection contre les surtensions pour bus de terrain
- Aller à la sous-catégorie
- Aller à la sous-catégorie
-
Relais et contacteurs
- Théorie relais et contacteurs
- Relais statiques triphasés
- Relais statiques CC
- Régulateurs, circuits de commande et accessoires
- Démarrages progressifs et contacteurs inverseurs
- Relais electromécaniques
- Contacteurs
- Commutateurs rotatifs
-
Relais statiques monophasés
- Relais semi-conducteurs AC monophasés, série 1 | D2425 | D2450
- Relais à semi-conducteurs CA monophasés, séries CWA et CWD
- Relais à semi-conducteurs CA monophasés des séries CMRA et CMRD
- Relais à semi-conducteurs CA monophasés, série PS
- Relais semi-conducteurs AC double et quadruple, série D24 D, TD24 Q, H12D48 D
- Relais statiques monophasés, série GN
- Relais à semi-conducteurs CA monophasés, série CKR
- Relais AC monophasés SÉRIES ERDA ET ERAA pour rail DIN
- Relais CA monophasés pour courant 150A
- Relais à semi-conducteurs doubles intégrés à un dissipateur thermique pour un rail DIN
- Aller à la sous-catégorie
- Relais statiques monophasé pour c.imp.
- Relais d'interface
- Aller à la sous-catégorie
- Composants inductifs
- Radiateurs, varistances, protections thermiques
- Ventilateurs
- Climatiseurs et accessoires d'armoires électriques
-
Batteries, chargeurs, blocs d'alimentation tampon et onduleurs
- Batteries et Chargeurs - théorie
- Batteries Li-ion et non-standards. Systèmes de gestion des batteries (BMS)
- Batteries
- Chargeurs de batteries et accessoires
- Alimentation de secours UPS et alimentation tampon
- Convertisseurs de tension et accessoires pour photovoltaïque
- Stockage d'Energie
- Réservoirs de carburant
- Batteries lithium-ion
- Aller à la sous-catégorie
-
Automatique industrielle
- Futaba Drone Parts
- Interrupteurs de fin de course, micro-rupteurs
- Capteurs et convertisseurs
- Pyromètres
- Compteurs, Relais temporisés, Indicateurs de tableau
- Appareils industriels de protection
- Signalisation lumineuse et sonore
- Caméra thermique
- Afficheurs à LED
- Boutons et commutateurs
-
Enregistreurs
- Enregistreur de température à bande et afficheur numérique - AL3000
- Enregistreurs à microprocesseur avec ecran LCD série KR2000
- Enregistreur KR5000
- Indicateur avec fonction enregistrement de température et humidité HN-CH
- Matériaux consommables pour enregistreurs
- Enregistreur graphique compact 71VR1
- Enregistreur KR3000
- Enregistreur PC série R1M
- Enregistreur PC série R2M
- Enregistreur PC, 12 entrés isolées – RZMS
- Enregistreur PC, USB, 12 entrées isolées – RZUS
- Aller à la sous-catégorie
- Aller à la sous-catégorie
-
Câbles et chemins de câbles
- Fils
- Fils de Litz
- Câbles pour les applications spéciales
- Gaines
-
Tresses
- Tresses plates
- Tresses rondes
- Tresses très souples - plates
- Tresses très souples - rondes
- Tresses cuivre cylindriques
- Tresses cuivre cylindriques et protection
- Bandes de mise à la terre souples
- Tresses en acier zingué et inox
- Tresses isolantes en PVC - temp. 85°C
- Tresses plates en aluminium
- Kit de liaison - tresses et gaines
- Aller à la sous-catégorie
- Equipement pour la traction
- Cosses
- Barres flexible isolées
- Barre flexibles multicouches
- Systèmes de traçage des câbles
- Gaines annelées, tuyaux
- Aller à la sous-catégorie
- Voir toutes les catégories
-
Semi-conducteurs
-
-
- Fournisseurs
-
Applications
- Alimentations (UPS) et systèmes de redressement
- Automatisation HVAC
- Chauffage par induction
- Composants pour atmosphères potentiellement explosives (EX)
- Dispositifs de protection industriels
- Energy bank
- Équipements pour armoires de distribution, de contrôle et de télécommunications
- Impression
- L'automatisation industrielle
- L'automatisation industrielle
- Machines à souder et machines à souder
- Machines de séchage et de traitement du bois
- Machines pour le thermoformage des plastiques
- Machines-outils CNC
- Mesure et régulation de la température
- Mesure et régulation de la température
- Mines, métallurgie et fondation
- Moteurs et transformateurs
- Traction de tram et de chemin de fer
- Variateurs CA et CC (onduleurs)
-
Installation
-
-
Montaż urządzeń
- Montage d'armoires
- Conception et assemblage d'armoires
- Installation de systèmes électriques
- Composants
- Machines construites sur commande
- Travaux de recherche et développement R&D
-
Banc de test industriels
- Banc de test de semi-conducteurs de puissance
- Banc de test d'appareils électriques
- Banc de test de varistances et parafoudres
- Banc de test de fusibles d'automobile
- Banc de mesure de charge transitoire Qrr de thyristor et diodes
- Banc de test de rotor d'interruptuer série FD
- Banc de test de disjoncteurs différentiels de courant
- Banc d'étalonnage de relais
- Testeur d'essais visuels de tiges de piston de ressorts à gaz
- Commutateur à thyristor haute intensité
- Testeur de rupture de maille
- Aller à la sous-catégorie
- Voir toutes les catégories
-
-
-
Inducteurs
-
-
Modernizacja induktorów
- Réparation d'inducteurs usagés
- Modernisation des inducteurs
-
Production de nouveaux inducteurs
- Durcissement des vilebrequins
- Durcissement des dents de scie à ruban
- Chauffage des éléments avant collage
- Durcissement des chemins de roulement des roulements de moyeu de roue automobile
- Durcissement des composants de transmission d'entraînement
- Durcissement des arbres étagés
- Chauffage dans les joints de contraction
- Scanning durcissement
- Soudure tendre
- Chauffe-billettes
- Aller à la sous-catégorie
- Base de connaissances
- Voir toutes les catégories
-
-
-
Appareils à induction
-
-
Urządzenia indukcyjne
-
Générateurs pour chauffage par induction
-
Générateurs de chauffage par induction Ambrell
- Générateurs: puissance 500 W, fréquence 150-400 kHz
- Générateurs: puissance 1,2 - 2,4 kW, fréquence 150 - 400 kHz
- Générateurs: puissance 4,2 - 10 kW, fréquence 150 - 400 kHz
- Générateurs: puissance 10-15 kW, fréquence 50-150 kHz
- Générateurs: puissance 30-45 kW, fréquence 50-150 kHz
- Générateurs: puissance 65-135 kW, fréquence 50-150 kHz
- Générateurs: puissance 180-270 kW, fréquence 50-150 kHz
- Générateurs: puissance 20-35-50 kW, fréquence 15-45 kHz
- Générateurs: puissance 75-150 kW, fréquence 15-45 kHz
- Générateurs: puissance 200-500 kW, fréquence 15-45 kHz
- Générateurs: puissance 20-50 kW, fréquence 5-15 kHz
- Aller à la sous-catégorie
- Générateurs de chauffage par induction Denki Kogyo
-
Générateurs de chauffage par induction JKZ
- Générateurs de la série CX, fréquence: 50-120kHz, puissance: 5-25kW
- Générateurs de la série SWS, fréquence: 15-30kHz, puissance: 25-260kW
- Générateurs (fours) pour le formage et le forgeage série MFS (0,5-10 kHz)
- Fours de fusion MFS, fréquence: 0,5-10 kHz, puissance: 70-200kW
- Générateurs série UHT, fréquence: 200-400kHz, puissance: 10-160kW
- Aller à la sous-catégorie
- Générateurs de lampes pour le chauffage par induction
- Générateurs de chauffage par induction Himmelwerk
- Aller à la sous-catégorie
-
Générateurs de chauffage par induction Ambrell
- Réparations et modernisation
- Périphériques
-
Applications
- Applications médicales
- Applications pour l'industrie automobile
- Soudure tendre
- Brasage
- Brasage fort d'aluminium
- Brasage dur d'outils magnétiques en acier inoxydable
- Soudure de précision
- Soudure dans l'atmosphère
- Soudure des bouchons de dissipateurs thermiques en laiton et en acier
- Brasage des carbures frittés
- Souder la pointe de cuivre et le fil
- Aller à la sous-catégorie
- Base de connaissances
- Voir toutes les catégories
-
Générateurs pour chauffage par induction
-
-
-
Service
-
-
asd
- Service de refroidisseurs d'eau et de climatiseurs industriels
- Rénovation et modernisation des machines
-
Réparation d'appareils électroniques
- Service des onduleurs, servo variateurs et régulateurs DC
- Service d'onduleurs photovoltaïques
- Service des redresseurs de galvanoplastie FLEXKRAFT
- Offre de réparation d'équipement
- Liste des appareils desservis
- Réparation de filmeuse de billets
- Conditions pour les réparations et formulaire de demande de réparation
- Aller à la sous-catégorie
- Alimentation haute tension pour électrofiltres
- Imprimantes industrielles et étiqueteuses
- Certificats / agréments
- Voir toutes les catégories
-
-
- Contact
- Zobacz wszystkie kategorie
Les photos sont à titre informatif uniquement. Voir les spécifications du produit
please use latin characters
Chauffage des soudure des tuyaux
Tube and Pipe Coating Curing
Ambrell induction heating solutions are fast, efficient choices for all stages of the curing operation.
In preparation for coating, induction heating is used to remove surface moisture from pipes, preheating the pipe to the correct temperature for coating. Then – depending on the type of polymeric coating applied – the tube or pipe is heated to 150-300 °C (302-572°F) for curing the coating.
In addition to requiring less floor space than traditional furnaces and ovens, induction systems offer ergonomic benefits, are environmentally friendly, and have the unique capacity to selectively heat only portions of a tubular product.
Beyond these operational benefits, induction heating also delivers a higher quality coating solution. Unlike furnaces that rely on heating the coating first, induction heats the metal substrate beneath the coating – curing the coating from the inside out – leaving the surface soft and allowing solvents to evaporate and any outgassing to occur. Removing coatings to recover tubes and pipes for re-coating is another common use for induction heating. Typically, the pipe is heated to about 200 °C (392 °F), which breaks the bond between the surface and coating, allowing the coating to be peeled off. Using this method is more environmentally friendly than alternative methods of burning off or grinding off the coating.
Pre- and Post-Weld Heating
With the use of more thin-wall steel alloy pipes in today’s oil and gas pipelines, manufacturers and installers are turning to the fast, accurate and uniform heating of Ambrell induction heating systems. During the process of butt welding, induction heating is commonly used to preheat the joint area to 150-200 °C (302-392 °F) to prepare the area for a consistent quality weld. After welding, the joint area is heated to 600-650 °C (1112-1202 °F) for thermal stress relief of the weld area. Traditional gas flame and resistance heating systems are often impractical when these higher temperatures are required. Not only are they too slow to meet the cycle times demanded by the industry, but also the heating can be inaccurate and can lack uniformity around the full circumference and bandwidth of the weld joints.
Other benefits of induction heating include:
- Variable control over temperature/time parameters
- Minimal damage to factory coating, and no deleterious surface residues
- No open flames or exposed heating elements
- Reduces energy costs, and eliminates the need for large gas storage area
Hot Pipe Bending
Induction heating is the preferred heating method for bending of larger thicker walled pipes. This is due to the focused narrow band heating offered by the induction process with the resulting higher quality bends with lower quality and wall thinning than other bending methods. Because of this quality and accuracy, induction hot pipe bending is the preferred alternative to traditional fit-and-weld procedures, and can help companies meet the rigorous safety demands of the chemical and energy industries. Ambrell induction heating systems are available in the frequency and power levels to optimally heat any pipe for hot bending. Typically, induction hot bending is used on pipes with diameters from 2” (50mm) to 36” (915 mm), with wall thicknesses from Schedule 5 up to 2.5” (64mm).
Hot pipe bending with induction involves placing an induction heating coil around the pipe at the bend point, and heating a 1” (25mm) section of the pipe to 1000 °C (1832 °F). With the pipe at temperature, pressure is applied by a bending arm to bend it into the desired shape. Air and water quenches are used before and after the heat zone to promote bending solely at the hot zone.
Induction heating is the preferred heating method for bending larger thick-walled pipes used in the chemical and power generating industries.
Drill Pipe Heat Treatment
Drill Pipe Manufacturing
Ambrell supplies induction heating systems to companies that manufacture oil and mineral drill pipe to meet the requirements of API 5DP and GOST R 50278. Induction heating offers many benefits over flame or resistance heating during the manufacturing processes in drill pipe heat treating and welding of the tool posts onto the pipe ends, including:
- Consistency: Heat is generated within the part for precise, rapid, even heating
- Quality: Temperature variations that are seen in flame heating are eliminated
- Productivity: Faster heating enables single-part processing
- Safe: No exposed flame for a safer working environment
- Economical: Heat is applied only where it is needed
Upsetting or Forging Process for Wall Thickening
Drill pipe ends are thickened by heating the pipe end to 1100 °C (2012 °F) before forging. Induction is often used to heat multiple pipes in a single channel coil, or sequentially in a multi-position coil that produces one pipe-end every 150 seconds. These heating methods provide the time required for the heat to travel through the pipe wall, yet meet the 180 seconds floor-to-floor cycle time.
Ambrell induction heating systems allow the depth and rate of the heating to be precisely controlled, delivering the ideal temperature and timing for each step in the process, while meeting the 180 seconds floor to floor time cycle.
Tool Post Post Welding Heat Treating
After friction or arc welding of the tool post to the pipe end, the weld and surrounding pipe is brittle and requires a three-step heat treating process to toughen the joint area:
- Stress Relief: A 100mm (3.9”) wide band is heated to 700 °C (1292 °F) to stress relieve the weld area.
- Austenitization: A 25mm (1”) wide band is heated to 900 °C (1652 °F) for austenetising. The temperature through the pipe wall must be consistent prior to quenching.
- Through-Tempering:A 50mm (2”) band around the weld joint is heated to 675 °C (1247 °F) for through-tempering to produce the correct drill pipe toughness.
Heat Treating Ends of Thin Walled Mineral Drill Pipe
Both the internal and external threaded ends of mineral drill pipes are heat treated and surface hardened to provide a tough tube-end and to minimize wear during the repeated connecting and disconnecting during the drilling process.
Outside and inside temperatures during the annealing process on a 100mm band around the Tool box weld on a 126mm diameter pipe.
Austenitising 126mm Diameter Pipe
Through curie heating with inside and outside pipe 900 °C temperatures consistent before quenching.
Brazing Diamond or Carbide Inserts onto Oil and Gas Well Drill Bits
Oil and Gas Well Drill Bits
In drill bit manufacturing operations, multiple tool inserts (typically between 40 and 60) are individually brazed onto a single drill bit. These inserts may be a polycrystaline diamond compact (PDC) or tungsten carbide inserts (TCI)
Induction heating is an excellent technique for pre-heating the drill bit to 600 °C (1100 °F) in preparation for the torch brazing of the diamond inserts.
Drill bits come in a range of different sizes ranging from 8-20” (203-508mm) diameter. It takes 10-30 minutes for the heat to fully soak through the drill bit, which prepares the insert area for the brazing process. The torch is then used to raise the temperature of each individual joint to 790 °C (1454 °F) to flow the braze.
The PDC or TCI inserts are the cutting portion of the drilling tool, so they will wear out with use. Induction heating is used in the reclaiming process to heat up the drill bit, which allows the inserts to be removed for rebuilding the drill bit. (The inserts image is courtesy of U.S. Synthetics, Orem, UT.)
The insert’s brazing silver and copper “eutectic alloy” has a melting temperature of 790 °C (1454 °F), well below the melting temperature of silver or copper. This lower melt temperature prevents overheating of the diamond bit during brazing, yet still results in a strong joint to the drill bit.
Ambrell Induction Heating Systems at a Glance
Ambrell offers a wide power and frequency range with its EASYHEAT and EKOHEAT systems. So, whether your tube or pipe application is large or small, Ambrell can help you maximize cost efficiencies and productivity.
Ambrell’s systems are versatile with multiple capacitor and tap transformer configurations. They offer efficient power conversion, which minimizes energy expenses. They are also user-friendly, offer agile frequency tuning for repeatable heating, and can be easily integrated into your process thanks to their small footprint.
Systems include:
- Ease of integration into production processes with a portable workhead – up to 30m in some systems
- Wider frequency ranges allow more tubes and pipes of varying specifications to be heated with the same power supply
- Multiple capacitor and tap transformer configurations for a more versatile system than the competi-tion
- Agile frequency tuning for accurate, repeatable heating
- Efficient power conversion minimizes energy expenses
- Expert coil designs that maximize power delivery and save production time
- User-friendly operator interface in five languages (EN, ES, FR, DE, IT)
Envoyez une demande
Êtes-vous intéressé par ce produit? Avez-vous besoin d'informations supplémentaires ou d'une tarification individuelle?
Nous contacter
Ajouter à la liste de souhaits
Vous devez être connecté
Tube and Pipe Coating Curing
Ambrell induction heating solutions are fast, efficient choices for all stages of the curing operation.
In preparation for coating, induction heating is used to remove surface moisture from pipes, preheating the pipe to the correct temperature for coating. Then – depending on the type of polymeric coating applied – the tube or pipe is heated to 150-300 °C (302-572°F) for curing the coating.
In addition to requiring less floor space than traditional furnaces and ovens, induction systems offer ergonomic benefits, are environmentally friendly, and have the unique capacity to selectively heat only portions of a tubular product.
Beyond these operational benefits, induction heating also delivers a higher quality coating solution. Unlike furnaces that rely on heating the coating first, induction heats the metal substrate beneath the coating – curing the coating from the inside out – leaving the surface soft and allowing solvents to evaporate and any outgassing to occur. Removing coatings to recover tubes and pipes for re-coating is another common use for induction heating. Typically, the pipe is heated to about 200 °C (392 °F), which breaks the bond between the surface and coating, allowing the coating to be peeled off. Using this method is more environmentally friendly than alternative methods of burning off or grinding off the coating.
Pre- and Post-Weld Heating
With the use of more thin-wall steel alloy pipes in today’s oil and gas pipelines, manufacturers and installers are turning to the fast, accurate and uniform heating of Ambrell induction heating systems. During the process of butt welding, induction heating is commonly used to preheat the joint area to 150-200 °C (302-392 °F) to prepare the area for a consistent quality weld. After welding, the joint area is heated to 600-650 °C (1112-1202 °F) for thermal stress relief of the weld area. Traditional gas flame and resistance heating systems are often impractical when these higher temperatures are required. Not only are they too slow to meet the cycle times demanded by the industry, but also the heating can be inaccurate and can lack uniformity around the full circumference and bandwidth of the weld joints.
Other benefits of induction heating include:
- Variable control over temperature/time parameters
- Minimal damage to factory coating, and no deleterious surface residues
- No open flames or exposed heating elements
- Reduces energy costs, and eliminates the need for large gas storage area
Hot Pipe Bending
Induction heating is the preferred heating method for bending of larger thicker walled pipes. This is due to the focused narrow band heating offered by the induction process with the resulting higher quality bends with lower quality and wall thinning than other bending methods. Because of this quality and accuracy, induction hot pipe bending is the preferred alternative to traditional fit-and-weld procedures, and can help companies meet the rigorous safety demands of the chemical and energy industries. Ambrell induction heating systems are available in the frequency and power levels to optimally heat any pipe for hot bending. Typically, induction hot bending is used on pipes with diameters from 2” (50mm) to 36” (915 mm), with wall thicknesses from Schedule 5 up to 2.5” (64mm).
Hot pipe bending with induction involves placing an induction heating coil around the pipe at the bend point, and heating a 1” (25mm) section of the pipe to 1000 °C (1832 °F). With the pipe at temperature, pressure is applied by a bending arm to bend it into the desired shape. Air and water quenches are used before and after the heat zone to promote bending solely at the hot zone.
Induction heating is the preferred heating method for bending larger thick-walled pipes used in the chemical and power generating industries.
Drill Pipe Heat Treatment
Drill Pipe Manufacturing
Ambrell supplies induction heating systems to companies that manufacture oil and mineral drill pipe to meet the requirements of API 5DP and GOST R 50278. Induction heating offers many benefits over flame or resistance heating during the manufacturing processes in drill pipe heat treating and welding of the tool posts onto the pipe ends, including:
- Consistency: Heat is generated within the part for precise, rapid, even heating
- Quality: Temperature variations that are seen in flame heating are eliminated
- Productivity: Faster heating enables single-part processing
- Safe: No exposed flame for a safer working environment
- Economical: Heat is applied only where it is needed
Upsetting or Forging Process for Wall Thickening
Drill pipe ends are thickened by heating the pipe end to 1100 °C (2012 °F) before forging. Induction is often used to heat multiple pipes in a single channel coil, or sequentially in a multi-position coil that produces one pipe-end every 150 seconds. These heating methods provide the time required for the heat to travel through the pipe wall, yet meet the 180 seconds floor-to-floor cycle time.
Ambrell induction heating systems allow the depth and rate of the heating to be precisely controlled, delivering the ideal temperature and timing for each step in the process, while meeting the 180 seconds floor to floor time cycle.
Tool Post Post Welding Heat Treating
After friction or arc welding of the tool post to the pipe end, the weld and surrounding pipe is brittle and requires a three-step heat treating process to toughen the joint area:
- Stress Relief: A 100mm (3.9”) wide band is heated to 700 °C (1292 °F) to stress relieve the weld area.
- Austenitization: A 25mm (1”) wide band is heated to 900 °C (1652 °F) for austenetising. The temperature through the pipe wall must be consistent prior to quenching.
- Through-Tempering:A 50mm (2”) band around the weld joint is heated to 675 °C (1247 °F) for through-tempering to produce the correct drill pipe toughness.
Heat Treating Ends of Thin Walled Mineral Drill Pipe
Both the internal and external threaded ends of mineral drill pipes are heat treated and surface hardened to provide a tough tube-end and to minimize wear during the repeated connecting and disconnecting during the drilling process.
Outside and inside temperatures during the annealing process on a 100mm band around the Tool box weld on a 126mm diameter pipe.
Austenitising 126mm Diameter Pipe
Through curie heating with inside and outside pipe 900 °C temperatures consistent before quenching.
Brazing Diamond or Carbide Inserts onto Oil and Gas Well Drill Bits
Oil and Gas Well Drill Bits
In drill bit manufacturing operations, multiple tool inserts (typically between 40 and 60) are individually brazed onto a single drill bit. These inserts may be a polycrystaline diamond compact (PDC) or tungsten carbide inserts (TCI)
Induction heating is an excellent technique for pre-heating the drill bit to 600 °C (1100 °F) in preparation for the torch brazing of the diamond inserts.
Drill bits come in a range of different sizes ranging from 8-20” (203-508mm) diameter. It takes 10-30 minutes for the heat to fully soak through the drill bit, which prepares the insert area for the brazing process. The torch is then used to raise the temperature of each individual joint to 790 °C (1454 °F) to flow the braze.
The PDC or TCI inserts are the cutting portion of the drilling tool, so they will wear out with use. Induction heating is used in the reclaiming process to heat up the drill bit, which allows the inserts to be removed for rebuilding the drill bit. (The inserts image is courtesy of U.S. Synthetics, Orem, UT.)
The insert’s brazing silver and copper “eutectic alloy” has a melting temperature of 790 °C (1454 °F), well below the melting temperature of silver or copper. This lower melt temperature prevents overheating of the diamond bit during brazing, yet still results in a strong joint to the drill bit.
Ambrell Induction Heating Systems at a Glance
Ambrell offers a wide power and frequency range with its EASYHEAT and EKOHEAT systems. So, whether your tube or pipe application is large or small, Ambrell can help you maximize cost efficiencies and productivity.
Ambrell’s systems are versatile with multiple capacitor and tap transformer configurations. They offer efficient power conversion, which minimizes energy expenses. They are also user-friendly, offer agile frequency tuning for repeatable heating, and can be easily integrated into your process thanks to their small footprint.
Systems include:
- Ease of integration into production processes with a portable workhead – up to 30m in some systems
- Wider frequency ranges allow more tubes and pipes of varying specifications to be heated with the same power supply
- Multiple capacitor and tap transformer configurations for a more versatile system than the competi-tion
- Agile frequency tuning for accurate, repeatable heating
- Efficient power conversion minimizes energy expenses
- Expert coil designs that maximize power delivery and save production time
- User-friendly operator interface in five languages (EN, ES, FR, DE, IT)
Votre avis ne peut pas être envoyé
Signaler le commentaire
Signalement envoyé
Votre signalement ne peut pas être envoyé
Donnez votre avis
Avis envoyé
Votre avis ne peut être envoyé