Vous devez être connecté
-
revenirX
-
Composants
-
-
Category
-
Semi-conducteurs
- La diode
- Les thyristors
- Modules de puissance isolés
- Ponts redresseurs
-
Transistors
- Transistors | GeneSiC
- Modules MOSFET SiC | Mitsubishi
- Modules MOSFET SiC | STARPOWER
- Modules MOSFET SiC ABB
- Modules IGBT | MITSUBISHI
- Modules de transistors | MITSUBISHI
- Modules MOSFET | MITSUBISHI
- Modules de transistors | ABB
- Modules IGBT | POWEREX
- Modules IGBT | INFINEON (EUPEC)
- Composants semiconducteurs en carbure de silicium
- Aller à la sous-catégorie
- Circuits de commande
- Blocs de puissance
- Aller à la sous-catégorie
-
Transducteurs électriques
-
Transducteurs de courant LEM
- Transducteur de courant avec boucle de retour fermée (C/L)
- Transducteur de courant avec boucle de retour ouverte (O/L)
- Transducteur de courant alimenté en tension unipolaire
- Transducteurs en technologie Eta
- Transducteurs de courant de haute précision série LF xx10
- Transducteurs de courant série LH
- HOYS i HOYL – dédié au montage directement sur le jeu de barres
- Transducteurs de courant en technologie SMD série GO-SME et GO-SMS
- Capteurs de courant AUTOMOBILE
- Aller à la sous-catégorie
-
Transducteurs de tension | LEM
- Transducteurs de tension série LV
- Transducteurs de tension série DVL
- Transducteurs de tension de précision à double noyau magnétique CV
- Transducteur de tension de traction DV 4200/SP4
- Transducteurs de tension série DVM
- Transducteurs de tension DVC 1000-P
- Transducteurs de tension - Série DVC 1000
- Aller à la sous-catégorie
- Transducteurs de courant de précision | LEM
- Aller à la sous-catégorie
-
Transducteurs de courant LEM
-
Composants passifs (condensateurs, résistances, fusibles, filtres)
- Résistances
-
Fusibles
- Fusibles miniatures pour c.imp. série ABC et AGC
- Fusible rapides tubulaires
- Cartouches de courbe GL/GG et AM
- Cartouches ultrarapides
- Fusibles à action rapide (norme britannique et américaine)
- Fusibles à action rapide (norme européenne)
- Fusibles de traction
- Cartouche de haute tension
- Aller à la sous-catégorie
-
Condensateurs
- Condensateurs pour moteurs
- Condensateurs électrolitiques
- Condensateurs de type snubbers
- Condensateurs de puissance
- Condensateurs pour circuits continus
- Condensateurs de compensation de puissance
- Condensateurs de haute tension
- Condensateurs pour chauffage par induction
- Condensateurs pour impulsions
- Condensateurs DC LINK
- Condensateurs pour circuits AC/DC
- Aller à la sous-catégorie
- Filtres anti-interférences
- Supercondensateurs
-
Protection contre les surtensions
- Protection contre les surtensions pour les applications coaxiales
- Protection contre les surtensions pour les systèmes de vidéosurveillance
- Parafoudres de ligne électrique
- Protection contre surtensions pour LED
- Parafoudres pour le photovoltaïque
- Protection du système de pesage
- Protection contre les surtensions pour bus de terrain
- Aller à la sous-catégorie
- Aller à la sous-catégorie
-
Relais et contacteurs
- Théorie relais et contacteurs
- Relais statiques triphasés
- Relais statiques CC
- Régulateurs, circuits de commande et accessoires
- Démarrages progressifs et contacteurs inverseurs
- Relais electromécaniques
- Contacteurs
- Commutateurs rotatifs
-
Relais statiques monophasés
- Relais semi-conducteurs AC monophasés, série 1 | D2425 | D2450
- Relais à semi-conducteurs CA monophasés, séries CWA et CWD
- Relais à semi-conducteurs CA monophasés des séries CMRA et CMRD
- Relais à semi-conducteurs CA monophasés, série PS
- Relais semi-conducteurs AC double et quadruple, série D24 D, TD24 Q, H12D48 D
- Relais statiques monophasés, série GN
- Relais à semi-conducteurs CA monophasés, série CKR
- Relais AC monophasés SÉRIES ERDA ET ERAA pour rail DIN
- Relais CA monophasés pour courant 150A
- Relais à semi-conducteurs doubles intégrés à un dissipateur thermique pour un rail DIN
- Aller à la sous-catégorie
- Relais statiques monophasé pour c.imp.
- Relais d'interface
- Aller à la sous-catégorie
- Composants inductifs
- Radiateurs, varistances, protections thermiques
- Ventilateurs
- Climatiseurs et accessoires d'armoires électriques
-
Batteries, chargeurs, blocs d'alimentation tampon et onduleurs
- Batteries et Chargeurs - théorie
- Batteries Li-ion et non-standards. Systèmes de gestion des batteries (BMS)
- Batteries
- Chargeurs de batteries et accessoires
- Alimentation de secours UPS et alimentation tampon
- Convertisseurs de tension et accessoires pour photovoltaïque
- Stockage d'Energie
- Réservoirs de carburant
- Batteries lithium-ion
- Aller à la sous-catégorie
-
Automatique industrielle
- Futaba Drone Parts
- Interrupteurs de fin de course, micro-rupteurs
- Capteurs et convertisseurs
- Pyromètres
- Compteurs, Relais temporisés, Indicateurs de tableau
- Appareils industriels de protection
- Signalisation lumineuse et sonore
- Caméra thermique
- Afficheurs à LED
- Boutons et commutateurs
-
Enregistreurs
- Enregistreur de température à bande et afficheur numérique - AL3000
- Enregistreurs à microprocesseur avec ecran LCD série KR2000
- Enregistreur KR5000
- Indicateur avec fonction enregistrement de température et humidité HN-CH
- Matériaux consommables pour enregistreurs
- Enregistreur graphique compact 71VR1
- Enregistreur KR3000
- Enregistreur PC série R1M
- Enregistreur PC série R2M
- Enregistreur PC, 12 entrés isolées – RZMS
- Enregistreur PC, USB, 12 entrées isolées – RZUS
- Aller à la sous-catégorie
- Aller à la sous-catégorie
-
Câbles et chemins de câbles
- Fils
- Fils de Litz
- Câbles pour les applications spéciales
- Gaines
-
Tresses
- Tresses plates
- Tresses rondes
- Tresses très souples - plates
- Tresses très souples - rondes
- Tresses cuivre cylindriques
- Tresses cuivre cylindriques et protection
- Bandes de mise à la terre souples
- Tresses en acier zingué et inox
- Tresses isolantes en PVC - temp. 85°C
- Tresses plates en aluminium
- Kit de liaison - tresses et gaines
- Aller à la sous-catégorie
- Equipement pour la traction
- Cosses
- Barres flexible isolées
- Barre flexibles multicouches
- Systèmes de traçage des câbles
- Gaines annelées, tuyaux
- Aller à la sous-catégorie
- Voir toutes les catégories
-
Semi-conducteurs
-
-
- Fournisseurs
-
Applications
- Alimentations (UPS) et systèmes de redressement
- Automatisation HVAC
- Chauffage par induction
- Composants pour atmosphères potentiellement explosives (EX)
- Dispositifs de protection industriels
- Energy bank
- Équipements pour armoires de distribution, de contrôle et de télécommunications
- Impression
- L'automatisation industrielle
- L'automatisation industrielle
- Machines à souder et machines à souder
- Machines de séchage et de traitement du bois
- Machines pour le thermoformage des plastiques
- Machines-outils CNC
- Mesure et régulation de la température
- Mesure et régulation de la température
- Mines, métallurgie et fondation
- Moteurs et transformateurs
- Traction de tram et de chemin de fer
- Variateurs CA et CC (onduleurs)
-
Installation
-
-
Montaż urządzeń
- Montage d'armoires
- Conception et assemblage d'armoires
- Installation de systèmes électriques
- Composants
- Machines construites sur commande
- Travaux de recherche et développement R&D
-
Banc de test industriels
- Banc de test de semi-conducteurs de puissance
- Banc de test d'appareils électriques
- Banc de test de varistances et parafoudres
- Banc de test de fusibles d'automobile
- Banc de mesure de charge transitoire Qrr de thyristor et diodes
- Banc de test de rotor d'interruptuer série FD
- Banc de test de disjoncteurs différentiels de courant
- Banc d'étalonnage de relais
- Testeur d'essais visuels de tiges de piston de ressorts à gaz
- Commutateur à thyristor haute intensité
- Testeur de rupture de maille
- Aller à la sous-catégorie
- Voir toutes les catégories
-
-
-
Inducteurs
-
-
Modernizacja induktorów
- Réparation d'inducteurs usagés
- Modernisation des inducteurs
-
Production de nouveaux inducteurs
- Durcissement des vilebrequins
- Durcissement des dents de scie à ruban
- Chauffage des éléments avant collage
- Durcissement des chemins de roulement des roulements de moyeu de roue automobile
- Durcissement des composants de transmission d'entraînement
- Durcissement des arbres étagés
- Chauffage dans les joints de contraction
- Scanning durcissement
- Soudure tendre
- Chauffe-billettes
- Aller à la sous-catégorie
- Base de connaissances
- Voir toutes les catégories
-
-
-
Appareils à induction
-
-
Urządzenia indukcyjne
-
Générateurs pour chauffage par induction
-
Générateurs de chauffage par induction Ambrell
- Générateurs: puissance 500 W, fréquence 150-400 kHz
- Générateurs: puissance 1,2 - 2,4 kW, fréquence 150 - 400 kHz
- Générateurs: puissance 4,2 - 10 kW, fréquence 150 - 400 kHz
- Générateurs: puissance 10-15 kW, fréquence 50-150 kHz
- Générateurs: puissance 30-45 kW, fréquence 50-150 kHz
- Générateurs: puissance 65-135 kW, fréquence 50-150 kHz
- Générateurs: puissance 180-270 kW, fréquence 50-150 kHz
- Générateurs: puissance 20-35-50 kW, fréquence 15-45 kHz
- Générateurs: puissance 75-150 kW, fréquence 15-45 kHz
- Générateurs: puissance 200-500 kW, fréquence 15-45 kHz
- Générateurs: puissance 20-50 kW, fréquence 5-15 kHz
- Aller à la sous-catégorie
- Générateurs de chauffage par induction Denki Kogyo
-
Générateurs de chauffage par induction JKZ
- Générateurs de la série CX, fréquence: 50-120kHz, puissance: 5-25kW
- Générateurs de la série SWS, fréquence: 15-30kHz, puissance: 25-260kW
- Générateurs (fours) pour le formage et le forgeage série MFS (0,5-10 kHz)
- Fours de fusion MFS, fréquence: 0,5-10 kHz, puissance: 70-200kW
- Générateurs série UHT, fréquence: 200-400kHz, puissance: 10-160kW
- Aller à la sous-catégorie
- Générateurs de lampes pour le chauffage par induction
- Générateurs de chauffage par induction Himmelwerk
- Aller à la sous-catégorie
-
Générateurs de chauffage par induction Ambrell
- Réparations et modernisation
- Périphériques
-
Applications
- Applications médicales
- Applications pour l'industrie automobile
- Soudure tendre
- Brasage
- Brasage fort d'aluminium
- Brasage dur d'outils magnétiques en acier inoxydable
- Soudure de précision
- Soudure dans l'atmosphère
- Soudure des bouchons de dissipateurs thermiques en laiton et en acier
- Brasage des carbures frittés
- Souder la pointe de cuivre et le fil
- Aller à la sous-catégorie
- Base de connaissances
- Voir toutes les catégories
-
Générateurs pour chauffage par induction
-
-
-
Service
-
-
asd
- Service de refroidisseurs d'eau et de climatiseurs industriels
- Rénovation et modernisation des machines
-
Réparation d'appareils électroniques
- Service des onduleurs, servo variateurs et régulateurs DC
- Service d'onduleurs photovoltaïques
- Service des redresseurs de galvanoplastie FLEXKRAFT
- Offre de réparation d'équipement
- Liste des appareils desservis
- Réparation de filmeuse de billets
- Conditions pour les réparations et formulaire de demande de réparation
- Aller à la sous-catégorie
- Alimentation haute tension pour électrofiltres
- Imprimantes industrielles et étiqueteuses
- Certificats / agréments
- Voir toutes les catégories
-
-
- Contact
- Zobacz wszystkie kategorie
Czynniki wpływające na palność ziarna zbożowego i elementy oceny zagrożenia wybuchem pyłu.
Bezpieczeństwo procesów przemysłowych obejmuje zarówno bezpieczeństwo zawodowe pracowników, jak i bezpieczeństwo prowadzonych procesów technologicznych.
Oba te obszary tworzą wspólnie w zakładzie produkcyjnym ogólne bezpieczeństwo, które zgodnie z obowiązującymi przepisami prawnymi musi być zapewnione. Bezpieczeństwo procesowe, które jest integralną częścią ogólnego bezpieczeństwa, w szczególności odnosi się do instalacji procesowych zawierających i przetwarzających substancje chemiczne. Dotyczy więc zagadnień projektowania i eksploatacji instalacji, w których zachodzą różne procesy chemiczne i fizyczne związane z przetwarzaniem substancji chemicznych (operacje jednostkowe) w użyteczne produkty finalne, koncentrując się na zagadnieniach zapobiegania niepożądanym uwolnieniom mieszanin i/lub energii, a także przeciwdziałania skutkom takich uwolnień. Świadomość zachowania bezpieczeństwa procesowego towarzyszy projektowaniu każdej instalacji chemicznej czy rafineryjnej na wszystkich etapach jej rozwoju. W to wliczają się również obiekty magazynujące i przetwarzające substancje stałe. Jest to część każdego projektu procesowego, który jest głównym produktem inżynierii procesowej.
Strefy zagrożone wybuchem w branży spożywczej
Branża spożywcza jest specyficzną grupą zakładów przemysłowych posiadających na swoim terenie substancje stałe w postaci zbóż, cukru, herbaty, kawy, kukurydzy itp. Specyficzność ta polega na fakcie, że analiza zagrożenia pyłowego różni się od gazowego i dodatkowo inne parametry brane są pod uwagę w procesie oceny ryzyka. W przypadku wyrobów zbożowych, czynnikiem stwarzającym wysoki stopień zagrożenia pożarowego i wybuchowego jest obecność pyłu zbożowego i mącznego. Przy okazji warto odnotować, że Polska jest jednym z największych producentów zbóż w Europie i jednym z większych na świecie. Zgodnie z danymi GUS za 2018 r. roczna produkcja zboża wynosi w naszym kraju ok. 27 mln ton, w tym ok. 10 ton pszenicy i 4 mln pszenżyta. Powoduje to, że istnieje duże prawdopodobieństwo awarii w trakcie procesów jakim ono podlega. W trakcie procesu technologicznego przyjęcia, czyszczenia, suszenia i konserwacji zbóż oraz przemiału zbóż na mąki powstają miejscowe zanieczyszczenia pyłowe zwane pyłem technologicznym. Wytwarzane są one wskutek ocierania się wewnątrz urządzeń ziarna o siebie oraz o elementy maszyn. Pyły unoszą się więc wewnątrz urządzeń podczas transportu poziomego i pionowego, maszyn i urządzeń czyszczących, suszenia i rozdrabniania ziarna oraz przesiewania i sortowania oraz pakowania rozdrobnionych półproduktów oraz wyrobów gotowych.
Z badań wynika, że spośród wszystkich wybuchów pyłów blisko 25% stanowią eksplozje pyłów w przemyśle spożywczo-rolniczym i paszowym, przy czym najbardziej narażone na eksplozje są silosy, systemy odpylające i wentylacyjne – w tym suszarnie i magazyny przeznaczone do suszenia zbóż.
Silosy przeznaczone do przechowywania zboża, będącego bazowym surowcem podlegającym dalszej obróbce.
Wnętrza zbiorników stanowi strefę 20.
Wielkości właściwości fizykochemicznych
Zgodnie z przyjętą praktyką, każdy pył palny/wybuchowy należy przebadać w jednostce posiadającej odpowiednie ku temu laboratorium lub skorzystać z gotowych kart charakterystyki właściwych dla danej substancji. Wśród szeregu wielkości opisujących ich właściwości fizykochemiczne, wyróżnia się kilka parametrów:
Pmax [bar] – to maksymalne ciśnienie wybuchu zmierzone podczas wybuchu mieszaniny pyłowopowietrznej w zamkniętej objętości sfery pomiarowej (atmosfery wybuchowej). Wartość tego parametru zależna jest od ciśnienia początkowego.
(dp/dt)max [bar/s] – to maksymalny przyrost ciśnienia wybuchu atmosfery wybuchowej w jednostce czasu. Parametr ten określa „dynamikę” procesu wybuchu danego pyłu i na jego podstawie określany jest kolejny parametr Kst.
Kst [m * bar/s] – stała pyłowa, zwana wskaźnikiem wybuchowości, stanowi podstawę do międzynarodowej klasyfikacji wybuchowości pyłów (patrz tabela poniżej).
DGW [g/m3 ] – dolna granica wybuchowości. Tym mianem określa się najniższe stężenie paliwa (w tym wypadku pyłu) z powietrzem (w sferze pomiarowej), przy którym wystąpił wybuch. Poniżej tej wartości mieszanina palna jest zbyt uboga w składnik palny oraz zawiera zbyt dużo utleniacza, aby zainicjować wybuch.
GST [%] – graniczne stężenie tlenu to maksymalne stężenie tlenu w mieszaninie pyłu palnego z powietrzem i obojętnym gazem, dla którego nie występuje wybuch.
MEZ [mJ] – minimalna energia zapłonu mieszaniny pyłowo-powietrznej to minimalna energia wyładowania iskrowego (energia o zadanej wartości) pomiędzy dwoma elektrodami, która wywoła zapłon mieszaniny pyłowo-powietrznej.
MTZw [oC] – minimalna temperatura zapłonu warstwy pyłu to minimalna temperatura gorącej płyty, na której dojdzie do zapłonu umieszczonej w pierścieniu 5 mm warstwy pyłu.
MTZo [oC] – minimalna temperatura, w której dochodzi do zapłonu obłoku pyłu w piecu o znanej temperaturze ścianek i atmosfery
Klasa zagrożenia |
Kst [m * bar/s] |
Rodzaj zagrożenia |
ST0 |
0 |
Pył niewybuchowy |
ST1 |
1 – 200 |
Pył słabo wybuchowy |
ST2 |
201 - 300 |
Pył silnie wybuchowy |
ST3 |
>300 |
Pył bardzo silnie wybuchowy |
Tab. Klasy wybuchowości związane z parametrem Kst.
Czynniki wpływające na parametry wybuchowości
Na parametry wybuchowości pyłów może mieć wpływ szereg czynników:
- skład chemiczny cząsteczek pyłu (różne pierwiastki i związki spalają się w odmienny sposób);
- rozmiar cząsteczek pyłu (zazwyczaj parametry wybuchowości zmieniają się w zależności od rozmiaru ziaren pyłu – mniejsze ziarna spalają się szybciej. Następuje wzrost parametrów wybuchowości wraz ze zmniejszaniem się rozmiaru cząstek pyłu;
- wilgotność pyłu (duża zawartość wilgoci w pyle utrudnia jego spalanie);
- stężenie pyłu (określa ilość materiału palnego w mieszaninie pyłowo-powietrznej);
- stężenie tlenu (do inicjacji procesu spalania konieczne jest pewne graniczne stężenie tlenu – przy zbyt małym stężeniu tlenu nie zostanie zainicjowany proces spalania);
Właściwości fizyczne ziarna zbóż wiążą się ściśle z jego strukturą chemiczną i wywierają istotny wpływ na procesy życiowe składowanej masy zbożowej. Najważniejszym procesem życiowym ziarna jest oddychanie. Ziarno pobiera z powietrza tlen, spala substancje chemiczne i wydziela dwutlenek węgla oraz wodę. Wskutek tych procesów wytwarzane jest ciepło, które powoduje nasilenie oddychania ziarna i wzrost jego temperatury w dużym stopniu zależnej od stopnia zawilgocenia. W przypadku wzrostu wilgotności i temperatury przy dostępie tlenu ziarno pęcznieje i nabiera skłonności do samo ogrzania, a w konsekwencji do samozapalenia. Najbardziej ulega samo ogrzaniu ziarno o wzmożonych procesach życiowych, a więc ziarno niedojrzałe, świeżo zebrane i porośnięte oraz silnie zanieczyszczone nasionami chwastów. Samozapaleniu się ziarna sprzyja także sortowanie będące jednym z charakterystycznych procesów dla tej substancji. Jest to efekt sypkości i niejednorodności ziarna wchodzącego w skład magazynowej masy zbożowej. Występuje ono podczas przesypywania i przenoszenia ziarna, ale najczęściej przy napełnianiu i opróżnianiu komór zbożowych. Zawartość komory staje się niejednolita: w środku gromadzi się ziarno grube i średnie o najmniejszym stopniu zanieczyszczenia, a w kierunku ścian coraz drobniejsze o większym stopniu zanieczyszczeń. Przy wysokiej wilgotności tam też istnieje największe prawdopodobieństwo samozapalenia ziaren.
Kolejnymi cechami ziarna są higroskopijność, przewodnictwo cieplne oraz wydzielanie się pyłu przy wszystkich operacjach obróbki technologicznej. Higroskopijność polega na przyjmowaniu lub oddawaniu wilgotności, w zależności od wilgotności otoczenia. W takich miejscach należy się liczyć z większą ewentualnością samozapalenia. Ziarno jest złym przewodnikiem ciepła, zapala się w temperaturze około 450°C, wartość parametru ciepła ziarna wynosi 3,5 - 4,0 Mcal/kg, a spala się bezpłomieniowo żarząc się.
System pakowania mąki. Proces obejmuje transport, automatyczne ważenie i ładowanie wyrobu do specjalnych, antyelektrostatycznych toreb. Obszar klasyfikowany jako strefa 21.
Istnieje wiele rodzajów instalacji zajmujących się magazynowaniem i przetwórstwem ziarna zbożowego, więc nie da się określić jednego standardu jednak na podstawie zakładu piekarniczo-cukierniczego, dla którego DACPOL przygotowywał dokument oceny ryzyka wybuchowego można wytypować pewne charakterystyczne fragmenty linii technologicznej.
Rodzaje instalacji ze względu na funkcjonalność
Przykładową instalację można podzielić, ze względu na funkcjonalność, na następujące części:
- służącą do transportu pneumatycznego ziarna zbożowego przy załadunku silosów,
- przeznaczaną do magazynowania ziarna zbożowego w silosach zewnętrznych,
- służącą do transportu ślimakowego ziarna zbożowego przy rozładunku silosów,
- służącą do przygotowania ziarna do przemiału poprzez oczyszczanie mechaniczne
i nawilżanie, - obejmującą młyn do przemiału ziarna wraz z osprzętem,
- wewnętrzny zintegrowany system magazynowania mąki, w skład którego wchodzą cztery silosy wraz z osprzętem oraz instalacja służąca do transportu pneumatycznego mąki i jej dozowania na stanowiskach przygotowania ciasta.
Elementy mogące stanowić zagrożenie wybuchowe
Na podstawie przyjętych metod analitycznych dokonuje się stosownych operacji mających na celu określenie, który z elementów może stanowić zagrożenie wybuchowe, jego skalę oraz potencjalne skutki. Biorąc pod uwagę przykładową strukturę zakładu przytaczaną powyżej, można zidentyfikować przynajmniej kilkanaście obszarów i elementów potencjalnie niebezpiecznych. Należy tu wyszczególnić następujące rodzaje urządzeń i czynniki mogące spowodować awarię, a w konsekwencji pożar lub wybuch:
- Przenośniki ślimakowe, przenośniki łańcuchowe ,,rodlery”:
- skrzywienie wału ślimaka, tarcie łopatki o obudowę, zerwanie łańcucha, tarcie ogniwa, przedostanie się do wnętrza przedmiotu metalowego,
- zagrzanie i zapalenie pyłów.
- Podnośniki czerpakowe:
Zatarcie taśmy gruntowej, zapalenie taśmy i pyłów możliwe jest z następujących powodów:
- powstanie zatoru,
- zaczepienie czerpaka o obudowę,
- zablokowanie podnośnika wskutek przedostania się do stopy obcych przedmiotów,
- nadmiernego rozluźnienia taśmy gruntowej,
- zatarcia łożysk w przypadku niedostatecznego smarowania.
- Łuszczarki, maszyny sortujące do obróbki łuski ziarna.
Istnieje niebezpieczeństwo zapalenia lub wybuchów pyłów w przypadku:
- przedostania się do bębna przedmiotu metalowego,
- skrzenie wskutek rozluźnienia uchwytu cepa lub szczotki wywołane tarciem,
- płaszcz szmerglowy lub metalowy bębna,
- iskrzenie wskutek odłupania się kawałka masy ściernej,
- zagrzanie łożysk.
- Urządzenia do śrutowania, mlewniki walcowe, rzutniki otrębowe:
Zapalenie lub wybuch pyłu może nastąpić w przypadku dostania się do wnętrza przedmiotu metalowego i zaiskrzenie lub zagrzanie się tego przedmiotu wskutek tarcia.
- Transport pneumatyczny:
W urządzeniach i przewodach transportu pneumatycznego oraz urządzeniach zasypowych (cyklony) występują wybuchowe stężenia pyłów, które zderzając się powodują powstanie ładunków elektryczności statycznej. Powstanie wybuchu lub pożaru może nastąpić wskutek:
- wyładowania elektryczności statycznej,
- iskrzenia powodowanego tarciem łopatek wentylatora o obudowę,
- zagrzania się łożysk wentylatora.
- Urządzenia aspiracyjne:
Istnieje niebezpieczeństwo zapalenia się pyłu zbożowego lub mącznego w przypadku:
- powstania źródła pożaru w jednym z wyżej omówionych urządzeń,
- iskrzenia spowodowanego tarciem łopatek wentylatora,
- zatarcie łożysk wentylatora.
- Przy zasypie komór zbożowych i mącznych:
Niebezpieczeństwo istnieje wskutek przedostania się otwartego ognia lub zapalenia się pyłu od wadliwych urządzeń elektrycznych.
Układ przesiewaczy i fragment linii technologicznej oczyszczającej transportowane zboże z zanieczyszczeń i zbędnych dodatków. Obszar klasyfikowany jako strefa 21.
Etapy analizy oceny zagrożenia wybuchem
Analizy stanowiące podstawę dla sporządzenia oceny zagrożenia wybuchem są prowadzone etapowo. W pierwszym etapie zostaje przeprowadzona identyfikacja i weryfikacja danych dotyczących realizacji prac/ czynności i procesu w przedmiotowych obszarach. Prace są prowadzone w oparciu o udostępnioną przez Zleceniodawcę dokumentację zawierającą charakterystyki technologiczne instalacji i obiektów, a także specyfikacje fizykochemiczne zawierające parametry zapalności i wybuchowości stosowanych substancji palnych. Uzupełnienie i weryfikacja danych z dokumentacji stanowią informacje pozyskane w trakcie wizji lokalnej.
Na bazie zebranych informacji i danych procesowych jest przeprowadzana analiza identyfikacyjna zagrożenia wybuchem obejmująca:
- identyfikację substancji palnych,
- identyfikację miejsc wystąpienia potencjalnych atmosfer wybuchowych,
- identyfikację i klasyfikację źródeł emisji substancji palnych oraz
- określenie prawdopodobieństwa wystąpienia atmosfer wybuchowych.
Wyniki przeprowadzonych analiz identyfikacyjnych zagrożenia wybuchem zostaną wykorzystane do określenia klasyfikacyjnego stref zagrożenia wybuchem. Pełna dokumentacja klasyfikacyjna jest uzupełniona o graficzną dokumentację klasyfikacyjną zawierającą plany sytuacyjne obrazujące rodzaj i zasięg stref zagrożenia wybuchem oraz lokalizację i identyfikację źródeł emisji, zgodnie z zasadami określonymi w Polskich Normach. We wszystkich obszarach, gdzie sklasyfikowano strefy zagrożenia wybuchem, przeprowadzana jest analiza identyfikacyjna efektywnych źródeł zapłonu. Identyfikowane źródła zapłonu są klasyfikowane pod kątem prawdopodobieństwa uaktywnienia.
Laissez un commentaire