Vous devez être connecté
-
revenirX
-
Composants
-
-
Category
-
Semi-conducteurs
- La diode
- Les thyristors
- Modules de puissance isolés
- Ponts redresseurs
-
Transistors
- Transistors | GeneSiC
- Modules MOSFET SiC | Mitsubishi
- Modules MOSFET SiC | STARPOWER
- Modules MOSFET SiC ABB
- Modules IGBT | MITSUBISHI
- Modules de transistors | MITSUBISHI
- Modules MOSFET | MITSUBISHI
- Modules de transistors | ABB
- Modules IGBT | POWEREX
- Modules IGBT | INFINEON (EUPEC)
- Composants semiconducteurs en carbure de silicium
- Aller à la sous-catégorie
- Circuits de commande
- Blocs de puissance
- Aller à la sous-catégorie
-
Transducteurs électriques
-
Transducteurs de courant LEM
- Transducteur de courant avec boucle de retour fermée (C/L)
- Transducteur de courant avec boucle de retour ouverte (O/L)
- Transducteur de courant alimenté en tension unipolaire
- Transducteurs en technologie Eta
- Transducteurs de courant de haute précision série LF xx10
- Transducteurs de courant série LH
- HOYS i HOYL – dédié au montage directement sur le jeu de barres
- Transducteurs de courant en technologie SMD série GO-SME et GO-SMS
- Capteurs de courant AUTOMOBILE
- Aller à la sous-catégorie
-
Transducteurs de tension | LEM
- Transducteurs de tension série LV
- Transducteurs de tension série DVL
- Transducteurs de tension de précision à double noyau magnétique CV
- Transducteur de tension de traction DV 4200/SP4
- Transducteurs de tension série DVM
- Transducteurs de tension DVC 1000-P
- Transducteurs de tension - Série DVC 1000
- Aller à la sous-catégorie
- Transducteurs de courant de précision | LEM
- Aller à la sous-catégorie
-
Transducteurs de courant LEM
-
Composants passifs (condensateurs, résistances, fusibles, filtres)
- Résistances
-
Fusibles
- Fusibles miniatures pour c.imp. série ABC et AGC
- Fusible rapides tubulaires
- Cartouches de courbe GL/GG et AM
- Cartouches ultrarapides
- Fusibles à action rapide (norme britannique et américaine)
- Fusibles à action rapide (norme européenne)
- Fusibles de traction
- Cartouche de haute tension
- Aller à la sous-catégorie
-
Condensateurs
- Condensateurs pour moteurs
- Condensateurs électrolitiques
- Condensateurs de type snubbers
- Condensateurs de puissance
- Condensateurs pour circuits continus
- Condensateurs de compensation de puissance
- Condensateurs de haute tension
- Condensateurs pour chauffage par induction
- Condensateurs pour impulsions
- Condensateurs DC LINK
- Condensateurs pour circuits AC/DC
- Aller à la sous-catégorie
- Filtres anti-interférences
- Supercondensateurs
-
Protection contre les surtensions
- Protection contre les surtensions pour les applications coaxiales
- Protection contre les surtensions pour les systèmes de vidéosurveillance
- Parafoudres de ligne électrique
- Protection contre surtensions pour LED
- Parafoudres pour le photovoltaïque
- Protection du système de pesage
- Protection contre les surtensions pour bus de terrain
- Aller à la sous-catégorie
- Aller à la sous-catégorie
-
Relais et contacteurs
- Théorie relais et contacteurs
- Relais statiques triphasés
- Relais statiques CC
- Régulateurs, circuits de commande et accessoires
- Démarrages progressifs et contacteurs inverseurs
- Relais electromécaniques
- Contacteurs
- Commutateurs rotatifs
-
Relais statiques monophasés
- Relais semi-conducteurs AC monophasés, série 1 | D2425 | D2450
- Relais à semi-conducteurs CA monophasés, séries CWA et CWD
- Relais à semi-conducteurs CA monophasés des séries CMRA et CMRD
- Relais à semi-conducteurs CA monophasés, série PS
- Relais semi-conducteurs AC double et quadruple, série D24 D, TD24 Q, H12D48 D
- Relais statiques monophasés, série GN
- Relais à semi-conducteurs CA monophasés, série CKR
- Relais AC monophasés SÉRIES ERDA ET ERAA pour rail DIN
- Relais CA monophasés pour courant 150A
- Relais à semi-conducteurs doubles intégrés à un dissipateur thermique pour un rail DIN
- Aller à la sous-catégorie
- Relais statiques monophasé pour c.imp.
- Relais d'interface
- Aller à la sous-catégorie
- Composants inductifs
- Radiateurs, varistances, protections thermiques
- Ventilateurs
- Climatiseurs et accessoires d'armoires électriques
-
Batteries, chargeurs, blocs d'alimentation tampon et onduleurs
- Batteries et Chargeurs - théorie
- Batteries Li-ion et non-standards. Systèmes de gestion des batteries (BMS)
- Batteries
- Chargeurs de batteries et accessoires
- Alimentation de secours UPS et alimentation tampon
- Convertisseurs de tension et accessoires pour photovoltaïque
- Stockage d'Energie
- Réservoirs de carburant
- Batteries lithium-ion
- Aller à la sous-catégorie
-
Automatique industrielle
- Futaba Drone Parts
- Interrupteurs de fin de course, micro-rupteurs
- Capteurs et convertisseurs
- Pyromètres
- Compteurs, Relais temporisés, Indicateurs de tableau
- Appareils industriels de protection
- Signalisation lumineuse et sonore
- Caméra thermique
- Afficheurs à LED
- Boutons et commutateurs
-
Enregistreurs
- Enregistreur de température à bande et afficheur numérique - AL3000
- Enregistreurs à microprocesseur avec ecran LCD série KR2000
- Enregistreur KR5000
- Indicateur avec fonction enregistrement de température et humidité HN-CH
- Matériaux consommables pour enregistreurs
- Enregistreur graphique compact 71VR1
- Enregistreur KR3000
- Enregistreur PC série R1M
- Enregistreur PC série R2M
- Enregistreur PC, 12 entrés isolées – RZMS
- Enregistreur PC, USB, 12 entrées isolées – RZUS
- Aller à la sous-catégorie
- Aller à la sous-catégorie
-
Câbles et chemins de câbles
- Fils
- Fils de Litz
- Câbles pour les applications spéciales
- Gaines
-
Tresses
- Tresses plates
- Tresses rondes
- Tresses très souples - plates
- Tresses très souples - rondes
- Tresses cuivre cylindriques
- Tresses cuivre cylindriques et protection
- Bandes de mise à la terre souples
- Tresses en acier zingué et inox
- Tresses isolantes en PVC - temp. 85°C
- Tresses plates en aluminium
- Kit de liaison - tresses et gaines
- Aller à la sous-catégorie
- Equipement pour la traction
- Cosses
- Barres flexible isolées
- Barre flexibles multicouches
- Systèmes de traçage des câbles
- Gaines annelées, tuyaux
- Aller à la sous-catégorie
- Voir toutes les catégories
-
Semi-conducteurs
-
-
- Fournisseurs
-
Applications
- Alimentations (UPS) et systèmes de redressement
- Automatisation HVAC
- Chauffage par induction
- Composants pour atmosphères potentiellement explosives (EX)
- Dispositifs de protection industriels
- Energy bank
- Équipements pour armoires de distribution, de contrôle et de télécommunications
- Impression
- L'automatisation industrielle
- L'automatisation industrielle
- Machines à souder et machines à souder
- Machines de séchage et de traitement du bois
- Machines pour le thermoformage des plastiques
- Machines-outils CNC
- Mesure et régulation de la température
- Mesure et régulation de la température
- Mines, métallurgie et fondation
- Moteurs et transformateurs
- Traction de tram et de chemin de fer
- Variateurs CA et CC (onduleurs)
-
Installation
-
-
Montaż urządzeń
- Montage d'armoires
- Conception et assemblage d'armoires
- Installation de systèmes électriques
- Composants
- Machines construites sur commande
- Travaux de recherche et développement R&D
-
Banc de test industriels
- Banc de test de semi-conducteurs de puissance
- Banc de test d'appareils électriques
- Banc de test de varistances et parafoudres
- Banc de test de fusibles d'automobile
- Banc de mesure de charge transitoire Qrr de thyristor et diodes
- Banc de test de rotor d'interruptuer série FD
- Banc de test de disjoncteurs différentiels de courant
- Banc d'étalonnage de relais
- Testeur d'essais visuels de tiges de piston de ressorts à gaz
- Commutateur à thyristor haute intensité
- Testeur de rupture de maille
- Aller à la sous-catégorie
- Voir toutes les catégories
-
-
-
Inducteurs
-
-
Modernizacja induktorów
- Réparation d'inducteurs usagés
- Modernisation des inducteurs
-
Production de nouveaux inducteurs
- Durcissement des vilebrequins
- Durcissement des dents de scie à ruban
- Chauffage des éléments avant collage
- Durcissement des chemins de roulement des roulements de moyeu de roue automobile
- Durcissement des composants de transmission d'entraînement
- Durcissement des arbres étagés
- Chauffage dans les joints de contraction
- Scanning durcissement
- Soudure tendre
- Chauffe-billettes
- Aller à la sous-catégorie
- Base de connaissances
- Voir toutes les catégories
-
-
-
Appareils à induction
-
-
Urządzenia indukcyjne
-
Générateurs pour chauffage par induction
-
Générateurs de chauffage par induction Ambrell
- Générateurs: puissance 500 W, fréquence 150-400 kHz
- Générateurs: puissance 1,2 - 2,4 kW, fréquence 150 - 400 kHz
- Générateurs: puissance 4,2 - 10 kW, fréquence 150 - 400 kHz
- Générateurs: puissance 10-15 kW, fréquence 50-150 kHz
- Générateurs: puissance 30-45 kW, fréquence 50-150 kHz
- Générateurs: puissance 65-135 kW, fréquence 50-150 kHz
- Générateurs: puissance 180-270 kW, fréquence 50-150 kHz
- Générateurs: puissance 20-35-50 kW, fréquence 15-45 kHz
- Générateurs: puissance 75-150 kW, fréquence 15-45 kHz
- Générateurs: puissance 200-500 kW, fréquence 15-45 kHz
- Générateurs: puissance 20-50 kW, fréquence 5-15 kHz
- Aller à la sous-catégorie
- Générateurs de chauffage par induction Denki Kogyo
-
Générateurs de chauffage par induction JKZ
- Générateurs de la série CX, fréquence: 50-120kHz, puissance: 5-25kW
- Générateurs de la série SWS, fréquence: 15-30kHz, puissance: 25-260kW
- Générateurs (fours) pour le formage et le forgeage série MFS (0,5-10 kHz)
- Fours de fusion MFS, fréquence: 0,5-10 kHz, puissance: 70-200kW
- Générateurs série UHT, fréquence: 200-400kHz, puissance: 10-160kW
- Aller à la sous-catégorie
- Générateurs de lampes pour le chauffage par induction
- Générateurs de chauffage par induction Himmelwerk
- Aller à la sous-catégorie
-
Générateurs de chauffage par induction Ambrell
- Réparations et modernisation
- Périphériques
-
Applications
- Applications médicales
- Applications pour l'industrie automobile
- Soudure tendre
- Brasage
- Brasage fort d'aluminium
- Brasage dur d'outils magnétiques en acier inoxydable
- Soudure de précision
- Soudure dans l'atmosphère
- Soudure des bouchons de dissipateurs thermiques en laiton et en acier
- Brasage des carbures frittés
- Souder la pointe de cuivre et le fil
- Aller à la sous-catégorie
- Base de connaissances
- Voir toutes les catégories
-
Générateurs pour chauffage par induction
-
-
-
Service
-
-
asd
- Service de refroidisseurs d'eau et de climatiseurs industriels
- Rénovation et modernisation des machines
-
Réparation d'appareils électroniques
- Service des onduleurs, servo variateurs et régulateurs DC
- Service d'onduleurs photovoltaïques
- Service des redresseurs de galvanoplastie FLEXKRAFT
- Offre de réparation d'équipement
- Liste des appareils desservis
- Réparation de filmeuse de billets
- Conditions pour les réparations et formulaire de demande de réparation
- Aller à la sous-catégorie
- Alimentation haute tension pour électrofiltres
- Imprimantes industrielles et étiqueteuses
- Certificats / agréments
- Voir toutes les catégories
-
-
- Contact
- Zobacz wszystkie kategorie
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 7 of 8
Designing devices with Electromagnetic Compatibility (EMC) in mind is a crucial aspect that allows minimizing electromagnetic interference and ensuring reliable and standards-compliant operation of electronic devices.
Here are some essential points to consider when designing devices with EMC in mind:
Proper component placement: Thoughtful arrangement of components inside the device significantly influences electromagnetic emissions and susceptibility to interference. It is important to avoid placing elements with different electromagnetic characteristics close to each other and ensure adequate isolation between them. Proper component placement helps minimize cross-coupling of electromagnetic disturbances.
Application of shielding: Employing shielding in device design is essential for limiting emissions and minimizing susceptibility to electromagnetic interference. Shielding can involve the use of appropriate shielded enclosures, shielding of cables, printed circuit board layouts, or the application of protective layers in circuits. Adequate shielding helps protect sensitive signals from interference and reduces the impact of emissions on the environment.
Appropriate circuit layout and conduction: Designing devices with EMC in mind also includes proper circuit layout and conduction. Careful design of signal paths, the use of suitable EMC filters, ground separation, and the minimization of current loops contribute to reducing emissions and increasing resistance to interference. Additionally, appropriate conduction in circuits, such as using properly sized power and ground wires, helps minimize losses and unwanted electromagnetic effects.
Selection of appropriate components: The choice of suitable components significantly affects EMC performance. Components should comply well with EMC standards to minimize emissions and ensure high immunity to interference. Therefore, it is essential to select components from reputable manufacturers that meet the appropriate EMC standards.
Testing and verification: During the design of electronic devices with EMC in mind, conducting tests and verification at the design stage is crucial. Testing for electromagnetic emissions and susceptibility allows identifying issues and resolving them early. Verification for compliance with EMC standards and assessing device performance in controlled conditions ensures that the device will operate correctly and comply with EMC requirements.
Designing devices with Electromagnetic Compatibility (EMC) in mind is critical for minimizing electromagnetic interference, ensuring reliable operation, and complying with normative requirements. Proper component placement, shielding, appropriate circuit layout, selection of suitable components, testing, and verification are essential steps in achieving effective electromagnetic compatibility of devices.
Choosing appropriate components and materials is crucial for designing and manufacturing high-quality, reliable, and efficient electronic devices.
Properly chosen components and materials significantly impact the device's performance, durability, resistance to electromagnetic interference, and compliance with safety norms and regulations. Here are some important factors to consider when selecting components and materials:
Quality and reliability: Selecting components from reputable manufacturers known for high quality and reliability is crucial for ensuring device durability and reliability. Components should meet appropriate standards and come with the manufacturer's warranty and relevant certifications.
Compliance with EMC norms: Components should comply with Electromagnetic Compatibility (EMC) norms to minimize electromagnetic emissions and ensure high immunity to interference. It is essential to test components for emissions and susceptibility to interference and ensure they meet the required electromagnetic parameters.
Technical parameters: When choosing components, technical parameters such as voltage, current, frequency, operating temperature, lifetime, efficiency, and tolerances must be taken into account. Components should be appropriately matched to the project requirements and meet the specified parameters.
Resistance to environmental conditions: Depending on the device's application, components should be resistant to environmental conditions such as humidity, extreme temperatures, vibrations, or dust. Selecting components with appropriate environmental specifications helps ensure device reliability and durability under various operating conditions.
Use of eco-friendly materials: In the context of sustainable development, more attention is given to choosing eco-friendly materials. Opting for components and materials that are free from harmful substances and have minimal impact on the natural environment contributes to creating more sustainable electronic devices.
Availability and costs: When selecting components, their availability on the market and costs should be taken into account. Components should be available in suitable quantities and within required timelines to avoid delays in the production process. At the same time, considering component costs is essential for maintaining competitive pricing of devices.
Choosing appropriate components and materials is critical for the quality, reliability, and compliance of electronic devices. Properly chosen components that meet EMC standards, high quality, technical parameters, resistance to environmental conditions, eco-friendly materials, availability, and costs are significant factors to consider during the design and production of electronic devices.
Proper arrangement of cables and wires in electronic devices is essential for ensuring Electromagnetic Compatibility (EMC) and minimizing electromagnetic interference.
Incorrect cable arrangement can lead to interference emissions, affect signal quality, and increase device susceptibility to external interference. Here are some important factors to consider for proper cable and wire arrangement:
Separation of signals and power: Maintaining appropriate separation between signals and power cables is important. Separating signal cables from power cables helps avoid electromagnetic interference. Additionally, it is important to avoid running high-frequency signals in parallel with power cables, as it may induce interference.
Avoiding current loops: Current loops can affect electromagnetic emissions and susceptibility to interference. During cable arrangement, it is essential to avoid creating current loops that may lead to increased electromagnetic interference. Short and straight connections between elements should be prioritized to minimize cable length.
Shielding and grounding: For signal cables, the application of shielding can help reduce electromagnetic interference. Shielding cables protect signals from external interference. Proper grounding of shields and metal elements is also crucial for effectively draining electromagnetic interference.
Minimizing cable length: Excessively long cables can lead to increased emissions and susceptibility to electromagnetic interference. Therefore, minimizing cable length is crucial whenever possible. Shorter cables reduce the area where electromagnetic interference can be generated and spread.
Proper routing and securing of cables: Cables and wires should be appropriately routed and secured inside the device. Avoiding unnecessary twists, sharp bends, and tension in the cable helps maintain signal integrity and minimize the risk of damages and interference. Using appropriate insulations: Cables and wires should be adequately insulated to avoid distortions and interference. Proper insulation ensures protection against signal leakage, prevents shorts, and minimizes the risk of generating electromagnetic interference.
Proper arrangement of cables and wires is incredibly important for ensuring Electromagnetic Compatibility (EMC) in electronic devices. Separating signals from power, avoiding current loops, shielding and grounding, minimizing cable length, proper routing and securing of cables, and using appropriate insulation are essential factors to consider during device design and production. Proper cable arrangement contributes to minimizing electromagnetic interference, ensuring reliable and efficient operation of electronic devices.
Managing Electromagnetic Interference (EMI) is a significant element of electronic device design and production.
There are several strategies and techniques that can be applied to minimize the impact of electromagnetic interference on devices. Here are a few examples of EMI management strategies:
Designing EMI filters: EMI filters are used to reduce unwanted electromagnetic interference. They can be pass-through, suppressive, or combined filters that eliminate or limit electromagnetic interference within a specific frequency range. Designing and implementing appropriate EMI filters help minimize emissions and ensure adequate resistance to interference.
Shielding and shielded enclosures: Shielding is a technique that helps protect against electromagnetic interference. Using shielding in the form of suitable shielded enclosures, shielding of cables and printed circuit boards helps limit emissions and increase resistance to electromagnetic interference. Proper design and grounding of shields are crucial for effective shielding.
Arrangement of wires and cables: Properly arranging wires and cables in electronic devices is essential for minimizing electromagnetic interference. Separation of signals from power, minimizing cable length, avoiding current loops, and appropriate routing and securing of cables contribute to reducing emissions and increasing resistance to interference.
Designing printed circuit boards: Properly designing printed circuit boards (PCBs) is crucial for managing electromagnetic interference. Correct placement of components, signal traces, and grounding, minimizing current loops, and applying appropriate protective layers and ground planes help reduce electromagnetic interference.
Proper grounding: Proper grounding is extremely important for managing electromagnetic interference. Adequate grounding of shields, metal elements, power, and ground wires helps effectively dissipate electromagnetic interference and minimize its impact on devices.
Testing and verification: Conducting emission and susceptibility tests for electromagnetic interference during the design and production stages is an essential part of EMI management. Testing helps identify potential issues related to electromagnetic interference and allows for necessary modifications to meet EMC requirements.
Electromagnetic Interference (EMI) management strategies are essential to ensure proper functioning and compliance of electronic devices with EMC requirements. Proper design of EMI filters, shielding, cable and wire arrangement, PCB design, effective grounding, testing, and verification are examples of strategies that can be employed to minimize the impact of electromagnetic interference on devices.
Laissez un commentaire