trebuie să fii logat
-
întoarce-teX
-
Componente
-
-
Category
-
Semiconductori
- Diode
- Tiristoare
- Module izolate electric
- Punți redresoare
-
Tranzistori
- Tranzistoare | GeneSiC
- Module MOSFET SiC | Mitsubishi
- Module MOSFET SiC | STARPOWER
- Module ABB SiC MOSFET
- Module IGBT | MITSUBISHI
- Module tranzistor | MITSUBISHI
- Module MOSFET | MITSUBISHI
- Module tranzistor | ABB
- Module IGBT | POWEREX
- Module IGBT | INFINEON (EUPEC)
- Elemente semiconductoare - Carbură de siliciu (SiC)
- Accesați subcategoria
- Drivere
- Blocuri de alimentare
- Accesați subcategoria
- Traductoare electrice
-
Componente pasive (condensatori, rezistențe, siguranțe, filtre)
- Rezistori
-
Siguranţe
- Siguranţe de dimensiuni mici pentru sistemele electronice - seria ABC şi AGC
- Siguranțe tubulare cu acționare rapidă
- Siguranțe cu timp de întarziere pentru caracteristicile GL/GG și AM
- Siguranţe ultrarapide
- Siguranțe cu acționare rapidă la standarde din Marea Britanie și America
- Siguranțe cu acționare rapidă la standarde europene
- Siguranțe de tracțiune
- Siguranțe de înaltă tensiune
- Accesați subcategoria
-
Condensatori
- Condensatoare pentru motoare
- Condensatori electrolitici
- Condensatori snubbers
- Condensatori de putere
- Condensatoare pentru circuite de curent continuu DC
- Condensatoare de putere reactivă
- Condensatoare de înaltă tensiune
- Condensatoare pentru încălzirea prin inducţie
- Condensatoare de impuls
- Condensatoare DC LINK
- Condensatoare pentru circuite AC/DC
- Accesați subcategoria
- Filtre EMI
- Supercapacitori
-
Protecție la supratensiune
- Protecție la supratensiune pentru aplicații coaxiale
- Protecție la supratensiune pentru sistemele de supraveghere video
- Protecție la supratensiune pentru cablurile de alimentare
- Limitatoare pentru LED-uri
- Limitatoare de supraveghere pentru panourile solare
- Protecția sistemului de cântărire
- Protecție la supratensiune pentru Fieldbus
- Accesați subcategoria
- Accesați subcategoria
-
Relee şi contactoare
- Teoria releelor și a contactoarelor
- Relee semiconductoare AC 3-faze
- Relee semiconductoare DC
- Controlere, sisteme de control si accesorii
- Soft start si relee reversibile
- Relee electromecanice
- Contactoare
- Întrerupătoare rotative
-
Relee semiconductoare AC monofazate
- Relee semiconductoare cu o singură fază, seria 1 D2425 | D2450
- Relee în stare solidă monofazate, seria CWA și CWD
- Relee în stare solidă monofazate, seria CMRA I CMRD
- Relee semiconductoare monofazate, seria PS
- Relee semiconductoare duble și quad, AC seria D24 D, TD24 Q, H12D48 D
- Relee monofazate serie gn
- Relee cu stare monofazată din seria Ckr
- Relee de curent alternativ monofazate pentru SERIA ERDA ȘI ERAA
- Relee monofazate 150A AC
- Relee duble semiconductoare integrate cu o radiator din șină DIN
- Accesați subcategoria
- Relee semiconductoare monofazate pentru PCB de curent alternativ
- Relee de interfaţă
- Accesați subcategoria
- Componente inductive
- Radiatoare, varistoare, protectie termica
- Ventilatoare
- Aer condiţionat, accesorii carcase industriale, Instalatii de racire
-
Baterii, încărcătoare, surse de alimentare tampon și invertoare
- Acumulatoare, încărcătoare - descriere teoretică
- Baterii cu ioni de litiu. Baterii standard. Sistem de gestionare a bateriei (BMS)
- Acumulatoare
- Încărcătoare de baterii și accesorii
- Surse de alimentare UPS și tampon
- Convertoare și accesorii pentru panouri fotovoltaice
- Stocare a energiei
- Celule de combustibil
- Baterii cu ioni de litiu
- Accesați subcategoria
-
Automatizări
- Futaba Drone Parts
- Limita de switch-uri, switch-uri micro
- Traductoare de senzori
- Pirometre
- Contoare, Relee, Indicatoare de panou
- Dispozitive de protecție industriale
- Semnalizări luminoase şi acustice
- Camera de imagistică termică
- Afișaj LED
- Echipamente de control
-
Dispozitive de înregistrare
- Înregistrator temparatură cu bandă şi indicatoare digitale de înregistrare - AL3000
- Microprocesoare, înregistrator cu ecran LCD seria KR2000
- Înregistrator KR5000
- Contorul cu funcţia de înregistrare de umiditate şi temperatură HN-CH
- Materiale consumabile pentru Înregistratoare
- Compact înregistrator grafic 71VR1
- Înregistrator KR 3000
- Înregistrator PC seria R1M
- Înregistrator PC seria R2M
- Înregistrator PC, 12 intrări izolate - RZMS
- Înregistrator PC, USB, 12 intrări izolate - RZUS
- Accesați subcategoria
- Accesați subcategoria
-
Cabluri, fire Litz, furtunuri din material plastic, conexiuni flexibile
- Fire
- Fire Litz
-
Cabluri pentru aplicaţii extreme
- Cabluri de extensie şi compensare
- Cabluri de Thermocouple
- Cabluri de conectare pentru senzori PT
- Conductor multiplu cu fire de la temp. -60C la +1400C
- Cabluri de medie tensiune
- Fire de aprindere
- Cabluri de încalzire
- Conductor singur pt. cabluri cu temp. -60C la +450C
- Cabluri pentru calea ferată
- Cabluri de încălzire Ex
- Accesați subcategoria
- Tuburi de protecție
-
Cabluri împletite
- Cabluri plate - împletite
- Cabluri - panglica rotund
- Cabluri - panglică-plat foarte flexibil
- Cabluri panglică-rotund foarte flexibil
- Împletituri de cupru cilindrice
- Împletituri de cupru cilindrice cu protecţie
- Conexiuni flexibile de împământare
- Împletituri cilindrice din oțel galvanizat inoxidabil
- Împletituri de cupru izolate PCV - temperatura până la 85 C
- Împletituri plate din aluminiu
- Set de joncţiune - tuburi și împletituri
- Accesați subcategoria
- Echipamente de tracțiune
- Terminale pentru cablu
- Bare flexibile izolate pentru autobuz
- Bare flexibile multistrat de autobuz
- Sisteme de cablare (PESZLE)
- Furtunuri
- Accesați subcategoria
- Vezi toate categoriile
-
Semiconductori
-
-
- Furnizori
-
Aplicații
- Automatizare HVAC
- Automatizare industriala
- Automatizare industriala
- Componente pentru atmosfere potențial explozive (EX)
- Dispozitive industriale de protecție
- Echipamente pentru dulapuri de distribuție, control și telecomunicații
- Energy bank
- Încălzire prin inducție
- Mașini de sudat și mașini de sudat
- Mașini pentru termoformarea materialelor plastice
- Mașini pentru uscarea și prelucrarea lemnului
- Mașini-unelte CNC
- Măsurarea și reglarea temperaturii
- Măsurarea și reglarea temperaturii
- Minerit, metalurgie și fondare
- Motoare și transformatoare
- Surse de alimentare (UPS) și sisteme de redresare
- Tipărire
- Tracțiune de tramvai și cale ferată
- Unități de curent alternativ și continuu (invertoare)
-
Instalare
-
-
Inductori
-
-
Dispozitive de inducție
-
-
https://www.dacpol.eu/pl/naprawy-i-modernizacje
-
-
Serviciu
-
- Kontakt
- Zobacz wszystkie kategorie
Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 5 of 8

Basics of Electromagnetic Compatibility: What Is It and Why Is It Important? 5 of 8
Methods and Techniques for Electromagnetic Compatibility (EMC) Testing are Essential in Ensuring Electronic Devices' Compliance with EMC Standards and Regulations.
EMC testing aims to assess the device's immunity to electromagnetic interferences and the emission of interferences generated by it. Here are some key methods and techniques for EMC testing:
Radio Emission Testing: This type of testing focuses on measuring the level of electromagnetic emission generated by the device. Radio emission tests evaluate whether the device complies with EMC standards' restrictions on electromagnetic emissions within a specific frequency range. Special measurement devices and anechoic chambers, which minimize external interferences, are used to perform precise emission measurements.
Immunity Testing: Immunity testing exposes the device to electromagnetic interferences with known levels and characteristics. The goal is to verify whether the device continues to function correctly and does not fail in the presence of interferences. Immunity tests may include simulations of interferences such as electromagnetic fields, electrostatic discharges, conducted disturbances, or radiated disturbances.
Electrostatic Discharge (ESD) Testing: Electrostatic discharges (ESD) are one of the common sources of electromagnetic interferences. ESD tests assess the device's resistance to harmless electrostatic discharges that may occur during normal usage. Special ESD generators are used to produce controlled ESD impulses.
Conducted Disturbance Testing: Conducted disturbance tests focus on evaluating the device's resistance to electromagnetic interferences transmitted through power and communication cables. The goal is to ensure that the device is not susceptible to electromagnetic interferences transmitted through power supply, signal, or communication cables. Conducted disturbance tests may involve applying interferences to the cables and observing their impact on device operation.
Computer Simulations: In addition to physical tests, computer simulations are also used to predict and analyze electromagnetic behavior of devices. Computer simulations allow for modeling and analyzing electromagnetic emissions and immunity in various scenarios. This enables optimizing device design for EMC in the early stages of the design process.
EMC testing is highly essential in ensuring that electronic devices meet Electromagnetic Compatibility requirements. Employing various testing methods and techniques allows for the assessment of emissions and immunity to interferences, as well as the identification of potential issues and implementation of appropriate corrections. Adhering to EMC testing procedures is crucial for ensuring reliability, compliance with standards, and protecting users from unwanted electromagnetic interferences.
Analysis and Evaluation of Electromagnetic Compatibility (EMC) Test Results are Essential Steps in Ensuring Compliance of Electronic Devices with EMC Requirements.
During the analysis and evaluation of EMC test results, detailed assessments of collected data are conducted to identify any issues related to emissions and immunity to interferences. Here are some key aspects of EMC test results analysis and evaluation:
Comparison with EMC Standard Limits: The first step is to compare the test results with the permissible limits defined in EMC standards. For emissions, it is verified whether emitted electromagnetic signals do not exceed specified limits. For immunity, it is evaluated whether the device performs correctly in the presence of interferences. Comparing the results with EMC standard limits allows for the assessment of device compliance with EMC requirements.
Identification of Problems and Causes: If the test results indicate non-compliance with standards or reveal issues with emissions or immunity, a detailed analysis is conducted to identify the causes of these problems. This may involve spectral analysis, identification of sources of interferences, analysis of circuit designs, layouts, or shielding materials, and assessment of electromagnetic interactions between components.
Implementation of Corrections: Based on the identified issues and causes, appropriate corrections may be necessary. These can include changes to circuit designs, the use of better shielding materials, securing connections, optimizing conduction, or alterations to mechanical designs. Implementing corrections aims to improve emissions and immunity and adapt the device to EMC requirements.
Re-testing: After implementing corrections, re-testing of EMC is performed to assess the effectiveness of the introduced changes and ensure that the device meets EMC requirements. Repeated tests verify whether the test results comply with standards and whether the corrections have achieved the expected results.
Documentation and Certification: Upon completion of analysis, evaluation, and corrections, documentation is prepared, containing a detailed description of the conducted tests, identified issues, implemented corrections, and final results. This documentation is essential for certification purposes to confirm that the device meets EMC requirements and can be introduced to the market.
Analysis and evaluation of EMC test results are crucial stages in the process of ensuring compliance of devices with EMC requirements. Conducting thorough analysis, identifying issues, implementing appropriate corrections, and re-testing enable the optimization of emissions and immunity to interferences. As a result, devices become more reliable, compliant with EMC standards, and better protect users from unwanted electromagnetic interferences.
Sample Electromagnetic Compatibility (EMC) Testing Tools are essential equipment for laboratories and companies involved in testing and certifying electronic devices.
These tools allow for conducting various tests, assessing electromagnetic emissions and immunity to electromagnetic interference, as well as meeting EMC standards. Here are a few examples of EMC testing tools:
Spectrum Analyzers: Spectrum analyzers are used for measuring and analyzing electromagnetic signals in various frequency ranges. They enable the identification of electromagnetic emissions and analysis of their characteristics, such as power, frequency spectrum, and other parameters. Spectrum analyzers are extremely useful in the study and monitoring of electromagnetic interference.
Electrostatic Discharge (ESD) Generators: ESD generators are utilized to simulate electrostatic discharges that may occur under real device usage conditions. They allow for generating controlled ESD pulses with varying voltage levels, facilitating the testing of device resilience to such disturbances.
Conducted Emissions Analyzers: Conducted emissions analyzers are used for measuring and analyzing electromagnetic disturbances carried by cables and wires. They enable the identification of sources of interference and evaluation of their levels. Conducted emissions analyzers are helpful in testing device immunity to disturbances propagated through cables.
Anechoic Chambers: Anechoic chambers are specially designed rooms that minimize the reflection of electromagnetic waves. They allow for conducting emission and immunity tests in controlled conditions, eliminating external interferences. Anechoic chambers are used for precise measurement of emissions and assessment of device immunity.
Conducted and Radiated Interference Generators: Conducted and radiated interference generators are employed to simulate various types of electromagnetic interferences. They produce controlled electromagnetic disturbances to test device resilience against different types of interferences, such as conducted, radiated, or industrial disturbances.
Data Transmission Analyzers: Data transmission analyzers are used to examine the impact of electromagnetic interferences on data transmission. They allow for monitoring signal quality, identifying interferences, and analyzing their effects on data transmission. Data transmission analyzers are particularly useful in the telecommunications and networking industries.
The above-listed sample EMC testing tools are just a few among many available on the market. There are numerous specialized devices and systems used for comprehensive testing and assessment of device EMC compliance. The choice of tools depends on the type of tests, EMC standards, and specific requirements of the device under examination.
Related posts


Leave a comment