trebuie să fii logat
-
întoarce-teX
-
Componente
-
-
Category
-
Semiconductori
- Diode
- Tiristoare
- Module izolate electric
- Punți redresoare
-
Tranzistori
- Tranzistoare | GeneSiC
- Module MOSFET SiC | Mitsubishi
- Module MOSFET SiC | STARPOWER
- Module ABB SiC MOSFET
- Module IGBT | MITSUBISHI
- Module tranzistor | MITSUBISHI
- Module MOSFET | MITSUBISHI
- Module tranzistor | ABB
- Module IGBT | POWEREX
- Module IGBT | INFINEON (EUPEC)
- Elemente semiconductoare - Carbură de siliciu (SiC)
- Accesați subcategoria
- Drivere
- Blocuri de alimentare
- Accesați subcategoria
- Traductoare electrice
-
Componente pasive (condensatori, rezistențe, siguranțe, filtre)
- Rezistori
-
Siguranţe
- Siguranţe de dimensiuni mici pentru sistemele electronice - seria ABC şi AGC
- Siguranțe tubulare cu acționare rapidă
- Siguranțe cu timp de întarziere pentru caracteristicile GL/GG și AM
- Siguranţe ultrarapide
- Siguranțe cu acționare rapidă la standarde din Marea Britanie și America
- Siguranțe cu acționare rapidă la standarde europene
- Siguranțe de tracțiune
- Siguranțe de înaltă tensiune
- Accesați subcategoria
-
Condensatori
- Condensatoare pentru motoare
- Condensatori electrolitici
- Condensatori snubbers
- Condensatori de putere
- Condensatoare pentru circuite de curent continuu DC
- Condensatoare de putere reactivă
- Condensatoare de înaltă tensiune
- Condensatoare pentru încălzirea prin inducţie
- Condensatoare de impuls
- Condensatoare DC LINK
- Condensatoare pentru circuite AC/DC
- Accesați subcategoria
- Filtre EMI
- Supercapacitori
-
Protecție la supratensiune
- Protecție la supratensiune pentru aplicații coaxiale
- Protecție la supratensiune pentru sistemele de supraveghere video
- Protecție la supratensiune pentru cablurile de alimentare
- Limitatoare pentru LED-uri
- Limitatoare de supraveghere pentru panourile solare
- Protecția sistemului de cântărire
- Protecție la supratensiune pentru Fieldbus
- Accesați subcategoria
- Accesați subcategoria
-
Relee şi contactoare
- Teoria releelor și a contactoarelor
- Relee semiconductoare AC 3-faze
- Relee semiconductoare DC
- Controlere, sisteme de control si accesorii
- Soft start si relee reversibile
- Relee electromecanice
- Contactoare
- Întrerupătoare rotative
-
Relee semiconductoare AC monofazate
- Relee semiconductoare cu o singură fază, seria 1 D2425 | D2450
- Relee în stare solidă monofazate, seria CWA și CWD
- Relee în stare solidă monofazate, seria CMRA I CMRD
- Relee semiconductoare monofazate, seria PS
- Relee semiconductoare duble și quad, AC seria D24 D, TD24 Q, H12D48 D
- Relee monofazate serie gn
- Relee cu stare monofazată din seria Ckr
- Relee de curent alternativ monofazate pentru SERIA ERDA ȘI ERAA
- Relee monofazate 150A AC
- Relee duble semiconductoare integrate cu o radiator din șină DIN
- Accesați subcategoria
- Relee semiconductoare monofazate pentru PCB de curent alternativ
- Relee de interfaţă
- Accesați subcategoria
- Componente inductive
- Radiatoare, varistoare, protectie termica
- Ventilatoare
- Aer condiţionat, accesorii carcase industriale, Instalatii de racire
-
Baterii, încărcătoare, surse de alimentare tampon și invertoare
- Acumulatoare, încărcătoare - descriere teoretică
- Baterii cu ioni de litiu. Baterii standard. Sistem de gestionare a bateriei (BMS)
- Acumulatoare
- Încărcătoare de baterii și accesorii
- Surse de alimentare UPS și tampon
- Convertoare și accesorii pentru panouri fotovoltaice
- Stocare a energiei
- Celule de combustibil
- Baterii cu ioni de litiu
- Accesați subcategoria
-
Automatizări
- Futaba Drone Parts
- Limita de switch-uri, switch-uri micro
- Traductoare de senzori
- Pirometre
- Contoare, Relee, Indicatoare de panou
- Dispozitive de protecție industriale
- Semnalizări luminoase şi acustice
- Camera de imagistică termică
- Afișaj LED
- Echipamente de control
-
Dispozitive de înregistrare
- Înregistrator temparatură cu bandă şi indicatoare digitale de înregistrare - AL3000
- Microprocesoare, înregistrator cu ecran LCD seria KR2000
- Înregistrator KR5000
- Contorul cu funcţia de înregistrare de umiditate şi temperatură HN-CH
- Materiale consumabile pentru Înregistratoare
- Compact înregistrator grafic 71VR1
- Înregistrator KR 3000
- Înregistrator PC seria R1M
- Înregistrator PC seria R2M
- Înregistrator PC, 12 intrări izolate - RZMS
- Înregistrator PC, USB, 12 intrări izolate - RZUS
- Accesați subcategoria
- Accesați subcategoria
-
Cabluri, fire Litz, furtunuri din material plastic, conexiuni flexibile
- Fire
- Fire Litz
-
Cabluri pentru aplicaţii extreme
- Cabluri de extensie şi compensare
- Cabluri de Thermocouple
- Cabluri de conectare pentru senzori PT
- Conductor multiplu cu fire de la temp. -60C la +1400C
- Cabluri de medie tensiune
- Fire de aprindere
- Cabluri de încalzire
- Conductor singur pt. cabluri cu temp. -60C la +450C
- Cabluri pentru calea ferată
- Cabluri de încălzire Ex
- Accesați subcategoria
- Tuburi de protecție
-
Cabluri împletite
- Cabluri plate - împletite
- Cabluri - panglica rotund
- Cabluri - panglică-plat foarte flexibil
- Cabluri panglică-rotund foarte flexibil
- Împletituri de cupru cilindrice
- Împletituri de cupru cilindrice cu protecţie
- Conexiuni flexibile de împământare
- Împletituri cilindrice din oțel galvanizat inoxidabil
- Împletituri de cupru izolate PCV - temperatura până la 85 C
- Împletituri plate din aluminiu
- Set de joncţiune - tuburi și împletituri
- Accesați subcategoria
- Echipamente de tracțiune
- Terminale pentru cablu
- Bare flexibile izolate pentru autobuz
- Bare flexibile multistrat de autobuz
- Sisteme de cablare (PESZLE)
- Furtunuri
- Accesați subcategoria
- Vezi toate categoriile
-
Semiconductori
-
-
- Furnizori
-
Aplicații
- Automatizare HVAC
- Automatizare industriala
- Automatizare industriala
- Componente pentru atmosfere potențial explozive (EX)
- Dispozitive industriale de protecție
- Echipamente pentru dulapuri de distribuție, control și telecomunicații
- Energy bank
- Încălzire prin inducție
- Mașini de sudat și mașini de sudat
- Mașini pentru termoformarea materialelor plastice
- Mașini pentru uscarea și prelucrarea lemnului
- Mașini-unelte CNC
- Măsurarea și reglarea temperaturii
- Măsurarea și reglarea temperaturii
- Minerit, metalurgie și fondare
- Motoare și transformatoare
- Surse de alimentare (UPS) și sisteme de redresare
- Tipărire
- Tracțiune de tramvai și cale ferată
- Unități de curent alternativ și continuu (invertoare)
-
Instalare
-
-
Inductori
-
-
Dispozitive de inducție
-
-
https://www.dacpol.eu/pl/naprawy-i-modernizacje
-
-
Serviciu
-
- Kontakt
- Zobacz wszystkie kategorie
Advanced Si-IGBT Chip Design for Maximum Overall System Performance

Advanced Si-IGBT Chip Design for Maximum Overall System Performance
The overall system performance is undoubtedly influenced to a significant extent by the choice of the power semiconductor technology employed. For conventional IGBT modules, the recent improvements in the VCEsat vs. Eoff trade-off shows a tendency towards saturation and hence the performance improvement of upcoming IGBT chip generations do not indicate a significant step in efficiency improvements anymore. With the new G1- IPM series it is possible to obtain substantial system efficiency improvement by utilizing an advanced Si-IGBT chip and implementing an adaptive gate control.
By Narender Lakshmanan and Thomas Radke, Mitsubishi Electric Europe B.V.
Introduction:
Mitsubishi Electric has introduced the new G1 series Intelligent Power Modules (IPM) with an advanced Si-IGBT design to address several key performance parameters and enable the end-user to achieve high system performance. The advancements in the G1 IPM chip technology are aimed at resolving some inherent drawback of the Si-IGBT especially when it is employed for motor control applications. The G1 IPM device has been developed by implementing some key advancements in the latest 7th generation IGBT. It can be noticed (refer Figure 1) that in comparison to the 7th generation conventional Si-IGBT, the advanced G1 IPM chip technology offers significant benefits although it belongs to the same chip generation.

Figure 1 : A comparison of the VCEsat x EOFF index for different Si-IGBT technologies
Short Circuit Capability and Electrical Performance:
Short circuit protection for a conventional Si-IGBT has been implemented using a ‘desaturation detection’ based system where the VCE across the IGBT is observed to ascertain the occurrence of a short circuit event. To facilitate a successful detection, the conventional Si-IGBT devices are designed such that several gate cells in the chip are left unconnected [6][2]. While this ensures that the IGBT enters into the desaturation mode beyond a particular value of IC, it also means that several electrical parameters are compromised to a certain extent [6][2][3]. The G1 IPM possess a Si-IGBT chip with a monolithically integrated current sense emitter (refer figure 2). The sense emitter feature facilitates an assessment of the IGBT collector current via direct measurement. Based on the input from the sense emitter, trip levels can be assigned and an SC turn-off can be initiated before the chip desaturates. This approach to directly determine the instantaneous IC renders the VCE based desaturation detection system obsolete. Thus, it is no longer necessary to ensure that the IGBT enters into the desaturation mode. As a direct consequence, all available gate cells in the Si-IGBT chip can be connected transforming the chip into a ‘full gate IGBT’ and the subsequent electrical benefits can be harvested due to the enhanced utilization of the Si-IGBT chip [1]. Additionally, the IGBT chip is provided with an on-chip temperature sensing diode in the center of the chip in order to ascertain the IGBT junction temperature with maximum effectiveness (refer figure 2).

Figure 2 : The temperature sensor and the current sense emitter components of the IGBT chip in the G1-IPM
Switching dv/dt as a Performance Limiting Factor:
One factor that negatively influences the lifetime of the insulation layers in the system (motor winding insulation or cable insulation) is the exposure to high speed transient voltages (dv/dt). The IGBT switching event is capable of generating high dv/dt at the terminals of the power module (especially during a turn-on event). A conventional solution to address this issue is to restrict the switching speed of the IGBT by employing a gate impedance such that the switching dv/dt is maintained below a particular level. The dv/dt versus IC characteristics is such that the highest dv/dt (worst case dv/dt) is experienced during turn-on of low IC and the turn-on dv/dt reduces with an increase in IC. Although the worst case dv/dt would be generated only during turn-on of low IC, a conventional gate driver with fixed turn-on gate resistances will force a restriction of switching speed for all values of IC. This approach will generate significant turn-on losses while operating at high IC even though the switching dv/dt is not the worst case during high IC operation. It is therefore clear that for conventional Si-IGBT technology, there is a trade-off between controlling the worst-case dv/ dt and efficiency.

Figure 3 : Utilization of the sense emitter to implement a switching speed control in the G1 IPM
Utilizing Sense Emitter to Control dv/dt Without Sacrificing Efficiency:
The sense emitter provision in the advanced full gate Si-IGBT open up the possibility to ascertain the IC. Based on the dv/dt vs IC dependency, it is clear that to address the worst case dv/dt, it is appropriate to implement a switching speed restriction only during the switching of low IC. Considering this key point, a switching technique has been implement in the G1 IPM Si-IGBT devices where the turn-on switching speed in regulated based on the IC. If the IC (from the sense emitter data) is ascertained to be below a particular threshold, the gate drive unit will be informed to apply a switching speed restriction such that the worst case dv/dt is avoided. When the switching IC exceeds the pre-set threshold value, the gate drive unit will be informed to turn the IGBT ON with a higher switching speed, such that the turn-on losses can be optimized. With this approach, the worst case dv/dt is avoided during switching, while simultaneously ensuring that the system efficiency is not compromised (refer Figure 3).
Full Gate IGBT with Sense Emitter - Analysis of Overall Performance:
The G1 IPM module utilizes the full gate 7th generation Si-IGBT which is equipped with the monolithically integrated sense emitter. This approach is aimed at combining the benefits of the full gate Si-IGBT along with the advantages of the sense emitter component. The target is to ensure maximum efficiency, high reliability (instantaneous IC based SC protection) and an acceptable EMI profile (dv/dt control). Figure 4 shows a comparison of the overall power loss performance of the full gate device with the conventional Si-IGBT (under same turn-on dv/dt condition). As evident from Figure 4, the full gate IGBT device generates approximately 18% less overall losses than the conventional Si-IGBT device under the mentioned working conditions.

Figure 4 : The comparison of the total power loss generated by a single IGBT + Diode combination in the 100A/1200V 7th gen Full Gate device and the 7th gen Si-IGBT (100A/1200V) for the conditions: VCC = 600V, Iout = 100 A rms, fC = 5 kHz, m = 1, cos(φ) = 0.8, TS = 80°C, fo = 50 Hz

Figure 5: The Comparison of total losses generated in a single IGBT + Diode combination in the 100A/1200V 7th gen Full Gate device and the 7th gen Si-IGBT (100A/1200V) for several switching frequencies. Conditions: VCC= 600V, Iout = 100 Arms, m = 1, cos (φ) = 0.8, Ts = 80°C, fo = 50 Hz
Under the conditions mentioned in Figure 4, the switching speed control technique allows for a 48% reduction in the turn-on losses. The full gate IGBT (with sense emitter) clearly generates significantly lower switching loss versus its convention counterpart. Figure 5 shows the overall power loss versus fC (switching frequency) of the full gate (with sense emitter) IGBT and the conventional Si-IGBT device. The gap in performance between the full gate IGBT (with sense emitter) and the conventional Si-IGBT increases with an increase in the fC.
For applications which require an operation at low levels of audible noise (high switching frequencies are necessary), the 7th generation full gate IGBT (with sense emitter) promises enormous system level benefits. Certain overload operation points exist for motor control applications. During the stand-still (locked rotor) condition - the load current is not symmetrically distributed among the inverter IGBTs, and during extremely low output frequencies - the inverter IGBTs can experience a high current ripple. Under such overload conditions, it is crucial to determine the IGBT junction temperatures of each chip to avoid an over-temperature failure event. The IGBT junction temperature can be effectively monitored using the on-chip temperature sensor integrated on each chip.
It can thus be concluded that the full gate Si-IGBT equipped with the sense emitter feature and the on-chip temperature sensor address several key challenges which were inherent to the conventional Si- IGBT approach thereby allowing the inverter developer to achieve significantly higher system performance.
References:
[1] An Advanced Si-IGBT Chip for Delivering Maximum Overall System Performance, Narender Lakshmanan and Thomas Radke, Proc. PCIM 2017
[2] USING F-SERIES IGBT MODULES, MITSUBISHI ELECTRIC. Application Note. Feb 2000
[3] New chip design technology for next generation power module. Katsumi Satoh et al., Proc. PCIM 2008
[4] A 6-in-1 IGBT module performance evaluation platform determining the trade-off between dV/dt and turn-on loss of different IGBT/ FwDi chip setups, Marco Honsberg, et al., Proc. EPE 2011
[5] Datasheet – CM100TX-24T
[6] A Novel Series of Intelligent Power Modules “V1” with Internally Paralleled FULL GATE CSTBTTM and mirror Emitter technology for short circuit sensing, Nishida Nobuya et al., Proc. PCIM 2010
Related posts


Leave a comment