-
вернутьсяX
-
Компоненты
-
-
Category
-
Полупроводниковые приборы
- Диоды
- Тиристоры
-
Электро-изолированные модули
- Электроизолированные модули | ВИШАЙ (ИК)
- Электроизолированные модули | INFINEON (EUPEC)
- Электроизолированные модули | Семикрон
- Электроизолированные модули | POWEREX
- Электроизолированные модули | IXYS
- Электроизолированные модули | ПОЗЕЙКО
- Электроизолированные модули | ABB
- Электроизолированные модули | TECHSEM
- Перейти в подкатегорию
- Выпрямительные мостики
-
Транзисторы
- Транзисторы | GeneSiC
- Модули SiC MOSFET | Mitsubishi
- Модули SiC MOSFET | STARPOWER
- Модули ABB SiC MOSFET
- Модули IGBT | МИЦУБИСИ
- Транзисторные модули | MITSUBISHI
- Модули MOSFET | МИЦУБИСИ
- Транзисторные модули | ABB
- Модули IGBT | POWEREX
- Модули IGBT | INFINEON (EUPEC)
- Полупроводниковые элементы из карбида кремния (SiC)
- Перейти в подкатегорию
- Драйвера
- Блоки мощности
- Перейти в подкатегорию
- Электрические преобразователи
-
Пассивные компоненты (конденсаторы, резисторы, предохранители, фильтры)
- Резисторы
-
Предохранители
- Миниатюрные предохранители для электронных плат серии ABC и AGC
- Быстрые трубчатые предохранители
- Медленные вставки с характеристиками GL/GG и AM
- Ультрабыстрые плавкие вставки
- Быстрые предохранители английский и американский стандарт
- Быстрые предохранители европейский стандарт
- Тяговые предохранители
- Высоковольтные предохранительные вставки
- Перейти в подкатегорию
-
Конденсаторы
- Конденсаторы для электромоторов
- Электролитические конденсаторы
- Конденсаторы типа snubbers
- Конденсаторы мощности
- Конденсаторы для цепей DC
- Конденсаторы для компенсации пассивной мощности
- Высоковольтные конденсаторы
- Конденсаторы большой мощности для индукционного нагрева
- Импульсные конденсаторы
- Конденсаторы звена постоянного тока
- Конденсаторы для цепей переменного/постоянного тока
- Перейти в подкатегорию
- Противопомеховые фильтры
- Ионисторы
-
Защита от перенапряжения
- Ограничители перенапряжения для приложений RF
- Ограничители перенапряжения для систем технического зрения
- Ограничители перенапряжения для линий электропередач
- Ограничители перенапряжения для светодиодов
- Ограничители перенапряжения для фотовольтаики
- Ограничители перенапряжения для систем взвешивания
- Ограничители перенапряжения для Fieldbus
- Перейти в подкатегорию
- Перейти в подкатегорию
-
Реле и контакторы
- Теория реле и контакторы
- Полупроводниковые реле AC 3-фазные
- Полупроводниковые реле DC
- Контроллеры, системы управления и аксессуары
- Системы плавного пуска и реверсивные контакторы
- Электро-механические реле
- Контакторы
- Оборотные переключатели
-
Полупроводниковые реле AC 1-фазные
- РЕЛЕ AC 1-ФАЗНЫЕ СЕРИИ 1 D2425 | D2450
- Однофазное реле AC серии CWA и CWD
- Однофазное реле AC серии CMRA и CMRD
- Однофазное реле AC серии PS
- Реле AC двойное и четверное серии D24 D, TD24 Q, H12D48 D
- Однофазные твердотельные реле серии gn
- Однофазные полупроводниковые реле переменного тока серии ckr
- Однофазные реле переменного тока ERDA И ERAA SERIES для DIN-рейки
- Однофазные реле переменного тока на ток 150А
- Двойные твердотельные реле, интегрированные с радиатором для DIN-рейки
- Перейти в подкатегорию
- Полупроводниковые реле AC 1-фазные для печати
- Интерфейсные реле
- Перейти в подкатегорию
- Индукционные компоненты
- Радиаторы, варисторы, термическая защита
- Вентиляторы
- Кондиционеры, оборудование для шкафов, охладители
-
Аккумуляторы, зарядные устройства, буферные источники питания и инверторы
- Аккумуляторы, зарядные устройства - теоретическое описание
- Модульные литий-ионные аккумуляторы, пользовательские батареи, Система управления батареями (BMS)
- Аккумуляторы
- Зарядные устройства и аксессуары
- Резервный источник питания ИБП и буферные источники питания
- Преобразователи и аксессуары для фотовольтаики
- Хранилище энергии
- Топливные элементы
- Литий-ионные аккумуляторы
- Перейти в подкатегорию
-
Автоматика
- Futaba Drone Parts
- Концевые выключатели, Микровыключатели
- Датчики Преобразователи
- Пирометры
- Счетчики, Реле времени, Панельные измерительные приборы
- Промышленные защитные устройства
- Световые и звуковые сигнальные установки
- Термокамеры, Тепловизоры
- LED-экраны
- Управляющая аппаратура
-
Регистраторы
- Регистраторы температуры с записью на ленту и с цифровым показателем - AL3000ym - AL3000
- Микропроцесорные регистраторы с экраном LCD серия KR2000
- Регистратор KR5000
- Измеритель с функцией регистрации влажности и температуры HN-CH
- Эксплуатационные материалы для регистраторов
- Компактный графический регистратор 71VR1
- Регистратор KR 3000
- Регистратор PC серии R1M
- Регистратор PC серии R2M
- Регистратор PC, USB, 12 изолированных входов – RZMS
- Регистратор PC, USB, 12 изолированных входов – RZUS
- Перейти в подкатегорию
- Перейти в подкатегорию
-
Провода, литцендрат, гофрированные рукава, гибкие соединения
- Провода
- Многожильные провода (Lica)
-
Кабели и провода для специальных применений
- Удлинительные и компенсационные провода
- Провода для термопар
- Присоединительные провода для датчиков PT
- Многожильные провода темп. от -60C до +1400C
- Провода среднего напряжения
- Провода зажигания
- Нагревательные провода
- Одножильные провода темп. от -60C до +450C
- Железнодородные провода
- Нагревательные провода в Ex
- Перейти в подкатегорию
- Оболочки
-
Плетеные кабели
- Плоские плетеные кабели
- Круглые плетеные кабели
- Очень гибкие плетеные кабели - плоские
- Очень гибкие плетеные кабели - круглые
- Медные цилиндрические плетеные кабели
- Медные цилиндрические плетеные кабели и кожуха
- Гибкие заземляющие ленты
- Цилиндрические плетеные провода из луженой и нержавеющей стали
- Медные изолированные плетеные провода PCV - температура до 85 градусов C
- Плоские алюминиевые плетеные провода
- Соединительный набор - плетеные провода и трубки
- Перейти в подкатегорию
- Аксессуары для тяги
- Кабельные наконечники
- Изолированные эластичные шины
- Многослойные гибкие шины
- Системы прокладки кабеля (PESZLE)
- Трубы
- Перейти в подкатегорию
- Просмотреть все категории
-
Полупроводниковые приборы
-
-
- Поставщики
-
Программы
- Energy bank
- Автоматика HVAC
- Горное дело, металлургия и литейное дело
- Двигатели и трансформаторы
- Измерение и регулирование температуры
- Измерение и регулирование температуры
- Индукционный нагрев
- Индустриальная автоматизация
- Источники питания (ИБП) и выпрямительные системы
- Компоненты для потенциально взрывоопасных сред (EX)
- Машины для сушки и обработки древесины
- Машины для термоформования пластмасс
- Оборудование для распределительных, контрольных и телекоммуникационных шкафов
- Печать
- Приводы переменного и постоянного тока (инверторы)
- Промышленная автоматика
- Промышленные защитные устройства
- Сварочные аппараты и сварочные аппараты
- Станки с ЧПУ
- Трамвай и ж / д тяга
-
Монтаж
-
-
Montaż urządzeń
- Монтаж шкафов
- Дизайн и сборка шкафов
- Монтаж энергосистем
- Компоненты
-
Машины на заказ
- Автоматизированная индустрия
- Фармацевтическая индустрия
- Целлюлозно-бумажная промышленность
- Пищевая промышленность и напитки
- Горнодобывающая промышленность
- Химическая и нефтехимическая промышленность
- Литейная промышленность
- Деревообработка и деревообрабатывающая промышленность
- Промышленная очистка воды
- Перейти в подкатегорию
- НИОКР, научно-исследовательские и опытно-конструкторские работы
-
Промышленные тестеры
- Тестеры силовых полупроводников
- Тестеры электрооборудования
- Тестеры варисторов и ОПН
- Автомобильный тестер предохранителей
- Qrr тестер для измерения переходных зарядов в тиристорах и силовых диодах
- Тестер ротора выключателей серии FD
- Аудит-тестер устройств защитного отключения
- Тестер калибровки реле
- Тестер визуальных испытаний поршневых штоков газовых рессор
- Сильноточный тиристорный переключатель
- Тестер на разрыв сетки
- Перейти в подкатегорию
- Просмотреть все категории
-
-
-
Индукторы
-
-
Modernizacja induktorów
- Ремонт бывших в употреблении индукторов
- Модернизация индукторов
-
Производство новых индукторов
- Закалка коленчатых валов
- Закалка зубьев ленточной пилы
- Нагрев элементов перед наклеиванием
- Упрочнение дорожек качения подшипников ступиц автомобильных колес
- Упрочнение компонентов трансмиссии привода
- Закалка ступенчатых валов
- Нагрев усадочных швов
- Сканирующая закалка
- Мягкая пайка
- Нагреватели заготовок
- Перейти в подкатегорию
- База знаний
- Просмотреть все категории
-
-
-
Индукционные устройства
-
-
Urządzenia indukcyjne
-
Генераторы для индукционного нагрева
-
Генераторы индукционного нагрева Ambrell
- Генераторы: mощность 500 Вт, частота 150-400 кГц
- Генераторы: мощность 1,2 - 2,4 кВт, частота 150 - 400 кГц
- Генераторы: mощность 4,2 - 10 кВт, частота 150 - 400 кГц
- Генераторы: mощность 10-15 кВт, частота 50-150 кГц
- Генераторы: mощность 30-45 кВт, частота 50-150 кГц
- Генераторы: mощность 65-135 кВт, частота 50-150 кГц
- Генераторы: mощность 180-270 кВт, частота 50-150 кГц
- Генераторы: mощность 20-35-50 кВт, частота 15-45 кГц
- Генераторы: mощность 75-150 кВт, частота 15-45 кГц
- Генераторы: mощность 200-500 кВт, частота 15-45 кГц
- Генераторы: mощность 20-50 кВт, частота 5-15 кГц
- Перейти в подкатегорию
- Генераторы индукционного нагрева Denki Kogyo
-
Генераторы индукционного нагрева JKZ
- Генераторы серии CX, частота: 50-120 кГц, мощность: 5-25 кВт
- Генераторы серии SWS, частота: 15-30 кГц, мощность: 25-260 кВт
- Генераторы (печи) для штамповки и ковки серии MFS, частота: 0,5-10кГц, мощность: 80-500кВт.
- Плавильные печи MFS, частота: 0,5-10 кГц, мощность: 70-200 кВт
- Генераторы серии UHT, частота: 200-400кГц, мощность: 10-160кВт
- Перейти в подкатегорию
- Генераторы ламп для индукционного нагрева
- Генераторы индукционного нагрева Himmelwerk
- Перейти в подкатегорию
-
Генераторы индукционного нагрева Ambrell
- Ремонт и модернизация
- Периферийные устройства
-
Приложения
- Медицинские приложения
- Приложения для автомобильной промышленности
- Мягкая пайка
- Пайка
- Пайка алюминия
- Пайка магнитных инструментов из нержавеющей стали
- Прецизионная пайка
- Пайка в защитной атмосфере
- Пайка латунных и стальных теплоотводящих колпачков
- Пайка спеченных карбидов
- Пайка медного наконечника и проволоки
- Перейти в подкатегорию
- База знаний
- Просмотреть все категории
-
Генераторы для индукционного нагрева
-
-
-
Услуга
-
-
asd
- Сервис промышленных водоохладителей и кондиционеров
- Ремонт и модернизация машин
- Ремонт и обслуживание силовой электроники, электроники и устройств промышленной автоматики
- Источники питания высокого напряжения для электрофильтров
- Промышленные принтеры и этикеточные машины
- Certyfikaty / uprawnienia
- Просмотреть все категории
-
-
- Контакт
- Zobacz wszystkie kategorie
Promieniowanie optyczne - jak się przed nim chronić?

Jednym z rodzajów efektywnych źródeł zapłonu, które zostało wymienione w normie „Atmosfery wybuchowe – zapobieganie wybuchowi i ochrona przed wybuchem” jest promieniowanie optyczne. Z punktu widzenia fizyki jest to oddziaływanie podlegające prawom optyki geometrycznej i falowej, a od strony bezpieczeństwa procesowego jeden z czynników, które w odpowiednich warunkach mogą doprowadzić do poważnej awarii przemysłowej. To, że światło i energia świetlna mogą spowodować zapłon atmosfer wybuchowych ustalił w latach 90-tych Physikalisch-Technische Bundesanstalt (PTB – Narodowy Instytut Metrologii Niemiec), czego efektem było powstanie w 2006 roku standardu IEC 60078-28, który normalizuje optyczną ochronę przeciwwybuchową (Ex op). Druga wersja tej normy obowiązuje od 2015 r. Główną przyczyną rozpoczęcia prac nad tym tematem był fakt, że raz po raz użytkownicy i operatorzy systemów przemysłowych stawali w obliczu podobnej sytuacji: powszechności obszarów z niebezpiecznymi gazami i pyłami przy jednoczesnym licznym występowaniu na nich urządzeń optycznych, opraw oświetleniowych LED czy światłowodów, które muszą być odpowiednio wykonane i zabezpieczone, aby nie stanowiły zagrożenia wybuchowego.
Podzespoły optyczne w systemach przemysłowych
Rzadko zdarza się, aby w instalacjach przemysłowych nie można było stosować rozwiązań optycznych. Są one nie tylko używane, ale też ich przybywa. Postępująca automatyzacja i cyfryzacja powoduje wprowadzanie coraz większej liczby maszyn i systemów, które do celów funkcjonowania, komunikacji, monitorowania czy pomiarów wykorzystują podzespoły optyczne. Przykładem są oprawy oświetleniowe, lasery, diody LED tudzież wszelkiego rodzaju sensory, rozwiązania czujnikowe oraz światłowody, które w zależności od rodzaju mogą mierzyć od 2 do 30 km. Biorąc pod uwagę warunki, w jakich muszą ww. urządzenia pracować – obecna atmosfera wybuchowa – istotne jest, aby spełniały wymagania dyrektywy ATEX 114, która określa całą procedurę wdrożenia wyrobu na rynek.
Światło: niebezpieczeństwo zapłonu
Łatwo zrozumieć dlaczego promieniowanie optyczne stwarza zagrożenie zapłonem – wystarczy użyć szkła powiększającego, aby skoncentrować trochę światła słonecznego na słomie i zobaczyć, jak szybko zaczyna się palić. Kiedy energia jest skupiona na małym obszarze, jest jednocześnie wzmacniana, co oznacza, że jest wielokrotnie silniejsza w ognisku niż w jego otoczeniu. Z kolei przewodnik optyczny skupia światło do bardzo małego punktu. Raport PTB W-67 pt. "Zapalanie wybuchowych mieszanin para/powietrze i gaz/powietrze w wyniku ciągłego promieniowania optycznego" omawiający to zjawisko został opublikowany już w 1996 roku. W 2006 r. opublikowano normę IEC 60079-28 „Atmosfery wybuchowe – Część 28: Ochrona urządzeń i systemów przesyłowych za pomocą promieniowania optycznego”. Po stosownych uzupełnieniach i doprecyzowaniu definicji norma ta została wdrożona na rynek europejski.
Zasadniczo norma ta omawia cztery potencjalne mechanizmy zapłonu:
- Promieniowanie optyczne powoduje, że cząsteczki nagrzewają się – w pewnych warunkach mogą osiągnąć temperaturę powierzchni, która może spowodować zapłon atmosfery wybuchowej,
- Zapłon termiczny objętości gazu, ponieważ długość fali optycznej odpowiada pasmu absorpcji gazu (rodzaj efektu rezonansowego),
- Zapłon fotochemiczny spowodowany fotochemiczną dysocjacją cząsteczek tlenu przez promieniowanie w zakresie ultrafioletowym,
- Bezpośredni, indukowany laserem rozkład gazu w ognisku silnej wiązki, wytwarzający plazmę lub falę uderzeniową, które potencjalnie działają jako źródło zapłonu.
Pierwszy potencjalny mechanizm – zapłon spowodowany nadmierną temperaturą powierzchni – ma w praktyce największe znaczenie.
Zgodnie z normą instalacje można zabezpieczyć na trzy sposoby:
- Chronione promieniowanie optyczne „op pr”,
- Układy optyczne z urządzeniami blokującymi „op sh” (wyłączone),
- Z natury bezpieczne promieniowanie optyczne „op is”.
W przeciwieństwie do sygnałów elektrycznych światło nie jest ograniczone pod względem lokalizacji. W rezultacie nawet źródło światła znajdujące się na zewnątrz lub w sąsiedztwie obszaru niebezpiecznego może paść na ten obszar i spowodować wybuch. Należy to wziąć pod uwagę na etapie projektowania systemu bezpieczeństwa i oceny ryzyka.
Zwłaszcza drugie wydanie normy wyraźnie mówi o tym, że nie każdy promień światła czy dioda LED stanie się od razu niebezpiecznym źródłem zapłonu. Zakres źródeł promieniowania dopuszczonych przepisami jest wyraźnie określony:
- Diody LED o promieniowaniu rozbieżnym, które nie są zaprojektowane w układzie matrycowym ani w technologii laserowej i są używane do wyświetlania stanu urządzenia lub jako podświetlenie wyświetlaczy LCD,
- Oprawy oświetleniowe z ciągłymi, rozbieżnymi źródłami światła (do wszystkich EPL) i oprawy oświetleniowe ze źródłami światła LED (wyłączone tylko dla EPL „Gc” lub „Dc”). Wszystkie oprawy oświetleniowe muszą jednak spełniać ogólne wymagania dotyczące sprzętu oświetleniowego np. minimalne odległości między częścią generującą światło, a elementami, które mogą je pochłaniać.
- Źródła promieniowania optycznego do zastosowań Gb lub Gc i Db lub Dc, które odpowiadają wartościom granicznym klasy 1 w normie IEC 60825-1 „Bezpieczeństwo produktów laserowych — Część 1: Klasyfikacja i wymagania dotyczące sprzętu”. Jednak w przypadku tych laserów klasy 1 odległość „oko do lasera”, która jest określona w stosownych przypadkach, jest również istotna dla celów ochrony przeciwwybuchowej.
Dodatek C normy wymienia procedurę oceny zagrożenia wystąpienia zapłonu w odniesieniu do promieniowania optycznego.


Chronione lub zablokowane
Bezpieczeństwo promieniowania optycznego „op pr” opiera się na pomyśle zapobiegania „ucieczce” promieniowania z jego obudowy. Kable światłowodowe muszą być zaprojektowane tak, aby były wystarczająco wytrzymałe dla tego typu ochrony lub ułożone w taki sposób, aby były chronione przed czynnikami, które mogłyby je zniszczyć. Obudowy muszą być zaprojektowane w taki sposób, aby eksplozja wewnątrz obudowy nie mogła spowodować zapłonu atmosfery zewnętrznej oraz aby żadna niebezpieczna ilość energii świetlnej nie przedostała się na zewnątrz – w związku z tym nie mogą zawierać okien inspekcyjnych ani podobnych elementów. Oznacza to, że ten sposób ochrony w dużej mierze odpowiada znanym z elektrycznych zabezpieczeń przeciwwybuchowych metodom „podwyższonego bezpieczeństwa” i „obudowy ognioszczelnej”. Inną opcją jest ochrona typu Ex p , czyli obudowy ciśnieniowej. Wymagane są również specjalne przepusty kablowe i złącza wtykowe. W związku z tym każde połączenie zewnętrzne w strefie 1 musi spełniać wszystkie odpowiednie wymagania normy IEC 60079-0. Skrzynki łączeniowe, które są również dostępne w certyfikowanej wersji dla strefy 1 są odpowiednią, niezawodną opcją do układania i dystrybucji kabli optycznych.
Drugi rodzaj ochrony wspomniany powyżej czyli zasada blokowania i wyłączania „op sh”, opiera się na natychmiastowym wykryciu uszkodzonych włókien i bezpiecznym wyłączeniu promieniowania optycznego, gdy tylko to nastąpi. Zasada ochrony leżąca u podstaw tej metody ochrony opiera się na ocenie ryzyka. W tym temacie użytkownikom urządzeń polecany jest zestaw norm dotyczących „bezpieczeństwa funkcjonalnego” (IEC 61508 i IEC 61511). IEC 60079-28 również zawiera wyraźne odniesienie do tych norm. Ze względu na niezwykle rygorystyczne wymagania dotyczące oprogramowania i sprzętu, na rynku dostępnych jest tylko kilka produktów spełniających wymagania stawiane tego rodzaju rozwiązaniom.
Optycznie iskrobezpieczny
Zasada „op is” z natury bezpiecznego promieniowania optycznego jest bardzo podobna do koncepcji iskrobezpieczeństwa elektrycznego „Ex i”. Opiera się na idei ograniczenia energii optycznej w systemie – na przykład w kablu światłowodowym – w normalnych warunkach pracy i w określonych warunkach awarii. Ogranicza to dopuszczalną moc promieniowania optycznego do użytku w obszarach niebezpiecznych w strefie 1 i grupie wybuchowej IIB w klasie temperaturowej T4 do maksymalnie 35 mW. Ponadto dodatkowe wymagania dotyczą promieniowania pulsacyjnego i są związane z czasem trwania impulsu. Dodatek E drugiego wydania normy IEC 60079-28 zawiera schemat blokowy do oceny impulsów optycznych.
Promieniowanie można również wyznaczyć jako iloraz emitowanej mocy optycznej w mW i napromieniowanej powierzchni w mm². Ochrona typu „op is” jest szczególnie zalecana dla instalacji Industrial Ethernet, ponieważ światłowody oferują te same zalety, co te znane już z iskrobezpieczeństwa elektrycznego. W szczególności optycznie nieodłączne bezpieczeństwo zapewnia wyjątkową elastyczność; dzięki temu rodzajowi ochrony, światłowody mogą być podłączane i odłączane w obszarach niebezpiecznych podczas pracy. Oznacza to, że prace instalacyjne i konserwacyjne można wykonywać w Strefie 1 równie łatwo, jak w systemach innych niż niebezpieczne. Podczas instalowania światłowodów „op is” należy szczególnie zwrócić uwagę na to, aby nie można było zmniejszać przekrojów kabli optycznych używanych w systemie. Może to spowodować kurczenie się ogniska wiązki światła, w wyniku czego dostępna energia zapłonu wzrośnie do niedopuszczalnego poziomu. Obowiązuje zasada podobna do tej stosowanej w obwodach iskrobezpiecznych: przy dużej liczbie kabli optycznych połączenie musi być zrealizowane w taki sposób, aby żadna dodatkowa energia nie mogła dostać się do światłowodu.
Jedną z łatwiejszych od strony eksploatacyjnej opcji w tych warunkach jest zastosowanie systemów operacyjnych i monitorujących, które można bez trudu podłączać i odłączać w aplikacjach mobilnych oraz w stale zmieniających się lokalizacjach. Nadają się również do instalacji zdalnych wejść/wyjść, w których dokonywane są częste modyfikacje i rozszerzenia. Ochrona typu „op is” jest również najprostszym rozwiązaniem dla tych, którzy chcą nadal używać technologii światłowodowej w strefie 0. Chociaż „op sh” i „op pr” można łączyć jako alternatywną metodę osiągnięcia tego celu, ta opcja wymaga znacznego więcej wydatków i jest mniej elastyczna w użyciu. Zdalne systemy wejść/wyjść już obsługują transmisję Ethernet w wersji przeciwwybuchowej za pośrednictwem połączenia Ex op i światłowodu.
Dostępna technologia
Do tworzenia sieci optycznie iskrobezpiecznych wymagane są specjalne izolatory optyczne. Od bardzo wczesnego etapu, produkty tego typu były opracowywane w oparciu o zasadę wewnętrznie bezpiecznego promieniowania optycznego, a pierwsze rozwiązania Remote I/O pojawiły się na rynku pod koniec lat 90-tych. Późniejsze wersje tego produktu zostały nawet zaprojektowane tak, aby umożliwić instalowanie pierścieni optycznych w obszarach niebezpiecznych przez co prowadzenie diagnostyki i wysyłanie alertów dotyczących tych produktów, na przykład w przypadku pęknięcia włókna szklanego lub poziomów sygnału, jest proste.
Dostępne są również rozwiązania dla Ethernetu przemysłowego, które można wdrożyć praktycznie za pomocą konwerterów mediów lub przełączników. Do tej pory Profibus DP był jednym z najlepszych sieci fieldbus, które są w stanie przesyłać duże ilości danych związanych ze zdalnym systemem we/wy w akceptowalnym czasie i które można wykorzystać do projektowania nawet dużych struktur systemowych w opłacalny sposób. Co więcej, jest dostępny zarówno dla kabli miedzianych, jak i światłowodowych w wersji przeciwwybuchowej. Ethernet przemysłowy otwiera nowe możliwości jeszcze szybszej i wydajniejszej transmisji sygnału. System komunikuje się za pomocą szeregu protokołów Ethernet czasu rzeczywistego, takich jak PROFINET, EtherNet/P i Modbus TCP. Ponadto technologia OPC UA lub klasyczna technologia FDT/DTM gwarantuje prostą integrację z systemami diagnostyki i zarządzania majątkiem.
Cyfryzacja systemów w przemyśle przetwórczym jest możliwa dzięki obecności Ethernetu w terenie. Od lat jednak coraz częściej instaluje się światłowody, ponieważ umożliwiają one mostkowanie dużych odległości i zapewniają lepszą odporność niż kable miedziane. Niezależnie od tego czy użytkownicy wybiorą światłowody „op is” czy kable miedziane dla Ethernet-APL z 2-WISE (2-Wire iskrobezpieczny Ethernet), zawsze będą mogli wybrać spośród szerokiego wyboru potencjalnych opcji i urządzeń, które mogą być użyte w sposób idealnie dopasowany do ich instalacji.
Связанные продукты
Связанные посты



Оставить комментарий