-
вернутьсяX
-
Компоненты
-
-
Category
-
Полупроводниковые приборы
- Диоды
- Тиристоры
-
Электро-изолированные модули
- Электроизолированные модули | ВИШАЙ (ИК)
- Электроизолированные модули | INFINEON (EUPEC)
- Электроизолированные модули | Семикрон
- Электроизолированные модули | POWEREX
- Электроизолированные модули | IXYS
- Электроизолированные модули | ПОЗЕЙКО
- Электроизолированные модули | ABB
- Электроизолированные модули | TECHSEM
- Перейти в подкатегорию
- Выпрямительные мостики
-
Транзисторы
- Транзисторы | GeneSiC
- Модули SiC MOSFET | Mitsubishi
- Модули SiC MOSFET | STARPOWER
- Модули ABB SiC MOSFET
- Модули IGBT | МИЦУБИСИ
- Транзисторные модули | MITSUBISHI
- Модули MOSFET | МИЦУБИСИ
- Транзисторные модули | ABB
- Модули IGBT | POWEREX
- Модули IGBT | INFINEON (EUPEC)
- Полупроводниковые элементы из карбида кремния (SiC)
- Перейти в подкатегорию
- Драйвера
- Блоки мощности
- Перейти в подкатегорию
-
Электрические преобразователи
-
Преобразователи тока / датчики тока ф. LEM
- Преобразователи тока с замкнутой петлей обратной связи (C/L) ф. LEM
- Преобразователи тока с открытой петлей обратной связи (O/L) ф. LEM
- Преобразователи тока с униполярным питанием ф. LEM
- Преобразователи в технологии Eta ф. LEM
- Датчики тока высокой точностью серии LF xx10
- Датчики тока серии LH
- HOYS i HOYL – предназначен для монтажа непосредственно на токопроводящей шине
- Преобразователи тока в технологии SMD, серии GO-SME и GO-SMS
- АВТОМОБИЛЬНЫЕ преобразователи тока
- Перейти в подкатегорию
-
Преобразователи напряжения | LEM
- Преобразователи напряжения серии LV
- Преобразователи напряжения серии DVL
- Прецизионные преобразователи напряжения с двойным магнитным сердечником серии CV
- Тяговый преобразователь напряжения DV 4200/SP4
- Преобразователи напряжения серии DVM
- Преобразователь напряжения DVC 1000-P
- Преобразователь напряжения DVC 1000
- Перейти в подкатегорию
- Прецизионные датчики тока
- Перейти в подкатегорию
-
Преобразователи тока / датчики тока ф. LEM
-
Пассивные компоненты (конденсаторы, резисторы, предохранители, фильтры)
- Резисторы
-
Предохранители
- Миниатюрные предохранители для электронных плат серии ABC и AGC
- Быстрые трубчатые предохранители
- Медленные вставки с характеристиками GL/GG и AM
- Ультрабыстрые плавкие вставки
- Быстрые предохранители английский и американский стандарт
- Быстрые предохранители европейский стандарт
- Тяговые предохранители
- Высоковольтные предохранительные вставки
- Перейти в подкатегорию
-
Конденсаторы
- Конденсаторы для электромоторов
- Электролитические конденсаторы
- Конденсаторы типа snubbers
- Конденсаторы мощности
- Конденсаторы для цепей DC
- Конденсаторы для компенсации пассивной мощности
- Высоковольтные конденсаторы
- Конденсаторы большой мощности для индукционного нагрева
- Импульсные конденсаторы
- Конденсаторы звена постоянного тока
- Конденсаторы для цепей переменного/постоянного тока
- Перейти в подкатегорию
- Противопомеховые фильтры
- Ионисторы
-
Защита от перенапряжения
- Ограничители перенапряжения для приложений RF
- Ограничители перенапряжения для систем технического зрения
- Ограничители перенапряжения для линий электропередач
- Ограничители перенапряжения для светодиодов
- Ограничители перенапряжения для фотовольтаики
- Ограничители перенапряжения для систем взвешивания
- Ограничители перенапряжения для Fieldbus
- Перейти в подкатегорию
- Перейти в подкатегорию
-
Реле и контакторы
- Теория реле и контакторы
- Полупроводниковые реле AC 3-фазные
- Полупроводниковые реле DC
- Контроллеры, системы управления и аксессуары
- Системы плавного пуска и реверсивные контакторы
- Электро-механические реле
- Контакторы
- Оборотные переключатели
-
Полупроводниковые реле AC 1-фазные
- РЕЛЕ AC 1-ФАЗНЫЕ СЕРИИ 1 D2425 | D2450
- Однофазное реле AC серии CWA и CWD
- Однофазное реле AC серии CMRA и CMRD
- Однофазное реле AC серии PS
- Реле AC двойное и четверное серии D24 D, TD24 Q, H12D48 D
- Однофазные твердотельные реле серии gn
- Однофазные полупроводниковые реле переменного тока серии ckr
- Однофазные реле переменного тока ERDA И ERAA SERIES для DIN-рейки
- Однофазные реле переменного тока на ток 150А
- Двойные твердотельные реле, интегрированные с радиатором для DIN-рейки
- Перейти в подкатегорию
- Полупроводниковые реле AC 1-фазные для печати
- Интерфейсные реле
- Перейти в подкатегорию
- Индукционные компоненты
- Радиаторы, варисторы, термическая защита
- Вентиляторы
- Кондиционеры, оборудование для шкафов, охладители
-
Аккумуляторы, зарядные устройства, буферные источники питания и инверторы
- Аккумуляторы, зарядные устройства - теоретическое описание
- Модульные литий-ионные аккумуляторы, пользовательские батареи, Система управления батареями (BMS)
- Аккумуляторы
- Зарядные устройства и аксессуары
- Резервный источник питания ИБП и буферные источники питания
- Преобразователи и аксессуары для фотовольтаики
- Хранилище энергии
- Топливные элементы
- Литий-ионные аккумуляторы
- Перейти в подкатегорию
-
Автоматика
- Futaba Drone Parts
- Концевые выключатели, Микровыключатели
- Датчики Преобразователи
- Пирометры
- Счетчики, Реле времени, Панельные измерительные приборы
- Промышленные защитные устройства
- Световые и звуковые сигнальные установки
- Термокамеры, Тепловизоры
- LED-экраны
- Управляющая аппаратура
-
Регистраторы
- Регистраторы температуры с записью на ленту и с цифровым показателем - AL3000ym - AL3000
- Микропроцесорные регистраторы с экраном LCD серия KR2000
- Регистратор KR5000
- Измеритель с функцией регистрации влажности и температуры HN-CH
- Эксплуатационные материалы для регистраторов
- Компактный графический регистратор 71VR1
- Регистратор KR 3000
- Регистратор PC серии R1M
- Регистратор PC серии R2M
- Регистратор PC, USB, 12 изолированных входов – RZMS
- Регистратор PC, USB, 12 изолированных входов – RZUS
- Перейти в подкатегорию
- Перейти в подкатегорию
-
Провода, литцендрат, гофрированные рукава, гибкие соединения
- Провода
- Многожильные провода (Lica)
-
Кабели и провода для специальных применений
- Удлинительные и компенсационные провода
- Провода для термопар
- Присоединительные провода для датчиков PT
- Многожильные провода темп. от -60C до +1400C
- Провода среднего напряжения
- Провода зажигания
- Нагревательные провода
- Одножильные провода темп. от -60C до +450C
- Железнодородные провода
- Нагревательные провода в Ex
- Перейти в подкатегорию
- Оболочки
-
Плетеные кабели
- Плоские плетеные кабели
- Круглые плетеные кабели
- Очень гибкие плетеные кабели - плоские
- Очень гибкие плетеные кабели - круглые
- Медные цилиндрические плетеные кабели
- Медные цилиндрические плетеные кабели и кожуха
- Гибкие заземляющие ленты
- Цилиндрические плетеные провода из луженой и нержавеющей стали
- Медные изолированные плетеные провода PCV - температура до 85 градусов C
- Плоские алюминиевые плетеные провода
- Соединительный набор - плетеные провода и трубки
- Перейти в подкатегорию
- Аксессуары для тяги
- Кабельные наконечники
- Изолированные эластичные шины
- Многослойные гибкие шины
- Системы прокладки кабеля (PESZLE)
- Трубы
- Перейти в подкатегорию
- Просмотреть все категории
-
Полупроводниковые приборы
-
-
- Поставщики
-
Программы
- Energy bank
- Автоматика HVAC
- Горное дело, металлургия и литейное дело
- Двигатели и трансформаторы
- Измерение и регулирование температуры
- Измерение и регулирование температуры
- Индукционный нагрев
- Индустриальная автоматизация
- Источники питания (ИБП) и выпрямительные системы
- Компоненты для потенциально взрывоопасных сред (EX)
- Машины для сушки и обработки древесины
- Машины для термоформования пластмасс
- Оборудование для распределительных, контрольных и телекоммуникационных шкафов
- Печать
- Приводы переменного и постоянного тока (инверторы)
- Промышленная автоматика
- Промышленные защитные устройства
- Сварочные аппараты и сварочные аппараты
- Станки с ЧПУ
- Трамвай и ж / д тяга
-
Монтаж
-
-
Montaż urządzeń
- Монтаж шкафов
- Дизайн и сборка шкафов
- Монтаж энергосистем
- Компоненты
-
Машины на заказ
- Автоматизированная индустрия
- Фармацевтическая индустрия
- Целлюлозно-бумажная промышленность
- Пищевая промышленность и напитки
- Горнодобывающая промышленность
- Химическая и нефтехимическая промышленность
- Литейная промышленность
- Деревообработка и деревообрабатывающая промышленность
- Промышленная очистка воды
- Перейти в подкатегорию
- НИОКР, научно-исследовательские и опытно-конструкторские работы
-
Промышленные тестеры
- Тестеры силовых полупроводников
- Тестеры электрооборудования
- Тестеры варисторов и ОПН
- Автомобильный тестер предохранителей
- Qrr тестер для измерения переходных зарядов в тиристорах и силовых диодах
- Тестер ротора выключателей серии FD
- Аудит-тестер устройств защитного отключения
- Тестер калибровки реле
- Тестер визуальных испытаний поршневых штоков газовых рессор
- Сильноточный тиристорный переключатель
- Тестер на разрыв сетки
- Перейти в подкатегорию
- Просмотреть все категории
-
-
-
Индукторы
-
-
Modernizacja induktorów
- Ремонт бывших в употреблении индукторов
- Модернизация индукторов
-
Производство новых индукторов
- Закалка коленчатых валов
- Закалка зубьев ленточной пилы
- Нагрев элементов перед наклеиванием
- Упрочнение дорожек качения подшипников ступиц автомобильных колес
- Упрочнение компонентов трансмиссии привода
- Закалка ступенчатых валов
- Нагрев усадочных швов
- Сканирующая закалка
- Мягкая пайка
- Нагреватели заготовок
- Перейти в подкатегорию
- База знаний
- Просмотреть все категории
-
-
-
Индукционные устройства
-
-
Urządzenia indukcyjne
-
Генераторы для индукционного нагрева
-
Генераторы индукционного нагрева Ambrell
- Генераторы: mощность 500 Вт, частота 150-400 кГц
- Генераторы: мощность 1,2 - 2,4 кВт, частота 150 - 400 кГц
- Генераторы: mощность 4,2 - 10 кВт, частота 150 - 400 кГц
- Генераторы: mощность 10-15 кВт, частота 50-150 кГц
- Генераторы: mощность 30-45 кВт, частота 50-150 кГц
- Генераторы: mощность 65-135 кВт, частота 50-150 кГц
- Генераторы: mощность 180-270 кВт, частота 50-150 кГц
- Генераторы: mощность 20-35-50 кВт, частота 15-45 кГц
- Генераторы: mощность 75-150 кВт, частота 15-45 кГц
- Генераторы: mощность 200-500 кВт, частота 15-45 кГц
- Генераторы: mощность 20-50 кВт, частота 5-15 кГц
- Перейти в подкатегорию
- Генераторы индукционного нагрева Denki Kogyo
-
Генераторы индукционного нагрева JKZ
- Генераторы серии CX, частота: 50-120 кГц, мощность: 5-25 кВт
- Генераторы серии SWS, частота: 15-30 кГц, мощность: 25-260 кВт
- Генераторы (печи) для штамповки и ковки серии MFS, частота: 0,5-10кГц, мощность: 80-500кВт.
- Плавильные печи MFS, частота: 0,5-10 кГц, мощность: 70-200 кВт
- Генераторы серии UHT, частота: 200-400кГц, мощность: 10-160кВт
- Перейти в подкатегорию
- Генераторы ламп для индукционного нагрева
- Генераторы индукционного нагрева Himmelwerk
- Перейти в подкатегорию
-
Генераторы индукционного нагрева Ambrell
- Ремонт и модернизация
- Периферийные устройства
-
Приложения
- Медицинские приложения
- Приложения для автомобильной промышленности
- Мягкая пайка
- Пайка
- Пайка алюминия
- Пайка магнитных инструментов из нержавеющей стали
- Прецизионная пайка
- Пайка в защитной атмосфере
- Пайка латунных и стальных теплоотводящих колпачков
- Пайка спеченных карбидов
- Пайка медного наконечника и проволоки
- Перейти в подкатегорию
- База знаний
- Просмотреть все категории
-
Генераторы для индукционного нагрева
-
-
-
Услуга
-
-
asd
- Сервис промышленных водоохладителей и кондиционеров
- Ремонт и модернизация машин
- Ремонт и обслуживание силовой электроники, электроники и устройств промышленной автоматики
- Источники питания высокого напряжения для электрофильтров
- Промышленные принтеры и этикеточные машины
- Certyfikaty / uprawnienia
- Просмотреть все категории
-
-
- Контакт
- Zobacz wszystkie kategorie
Фотографии предназначены только для информационных целей. Посмотреть спецификацию продукта
please use latin characters
Нагрев сварных швов труб
Tube and Pipe Coating Curing
Ambrell induction heating solutions are fast, efficient choices for all stages of the curing operation.
In preparation for coating, induction heating is used to remove surface moisture from pipes, preheating the pipe to the correct temperature for coating. Then – depending on the type of polymeric coating applied – the tube or pipe is heated to 150-300 °C (302-572°F) for curing the coating.
In addition to requiring less floor space than traditional furnaces and ovens, induction systems offer ergonomic benefits, are environmentally friendly, and have the unique capacity to selectively heat only portions of a tubular product.
Beyond these operational benefits, induction heating also delivers a higher quality coating solution. Unlike furnaces that rely on heating the coating first, induction heats the metal substrate beneath the coating – curing the coating from the inside out – leaving the surface soft and allowing solvents to evaporate and any outgassing to occur. Removing coatings to recover tubes and pipes for re-coating is another common use for induction heating. Typically, the pipe is heated to about 200 °C (392 °F), which breaks the bond between the surface and coating, allowing the coating to be peeled off. Using this method is more environmentally friendly than alternative methods of burning off or grinding off the coating.
Pre- and Post-Weld Heating
With the use of more thin-wall steel alloy pipes in today’s oil and gas pipelines, manufacturers and installers are turning to the fast, accurate and uniform heating of Ambrell induction heating systems. During the process of butt welding, induction heating is commonly used to preheat the joint area to 150-200 °C (302-392 °F) to prepare the area for a consistent quality weld. After welding, the joint area is heated to 600-650 °C (1112-1202 °F) for thermal stress relief of the weld area. Traditional gas flame and resistance heating systems are often impractical when these higher temperatures are required. Not only are they too slow to meet the cycle times demanded by the industry, but also the heating can be inaccurate and can lack uniformity around the full circumference and bandwidth of the weld joints.
Other benefits of induction heating include:
- Variable control over temperature/time parameters
- Minimal damage to factory coating, and no deleterious surface residues
- No open flames or exposed heating elements
- Reduces energy costs, and eliminates the need for large gas storage area
Hot Pipe Bending
Induction heating is the preferred heating method for bending of larger thicker walled pipes. This is due to the focused narrow band heating offered by the induction process with the resulting higher quality bends with lower quality and wall thinning than other bending methods. Because of this quality and accuracy, induction hot pipe bending is the preferred alternative to traditional fit-and-weld procedures, and can help companies meet the rigorous safety demands of the chemical and energy industries. Ambrell induction heating systems are available in the frequency and power levels to optimally heat any pipe for hot bending. Typically, induction hot bending is used on pipes with diameters from 2” (50mm) to 36” (915 mm), with wall thicknesses from Schedule 5 up to 2.5” (64mm).
Hot pipe bending with induction involves placing an induction heating coil around the pipe at the bend point, and heating a 1” (25mm) section of the pipe to 1000 °C (1832 °F). With the pipe at temperature, pressure is applied by a bending arm to bend it into the desired shape. Air and water quenches are used before and after the heat zone to promote bending solely at the hot zone.
Induction heating is the preferred heating method for bending larger thick-walled pipes used in the chemical and power generating industries.
Drill Pipe Heat Treatment
Drill Pipe Manufacturing
Ambrell supplies induction heating systems to companies that manufacture oil and mineral drill pipe to meet the requirements of API 5DP and GOST R 50278. Induction heating offers many benefits over flame or resistance heating during the manufacturing processes in drill pipe heat treating and welding of the tool posts onto the pipe ends, including:
- Consistency: Heat is generated within the part for precise, rapid, even heating
- Quality: Temperature variations that are seen in flame heating are eliminated
- Productivity: Faster heating enables single-part processing
- Safe: No exposed flame for a safer working environment
- Economical: Heat is applied only where it is needed
Upsetting or Forging Process for Wall Thickening
Drill pipe ends are thickened by heating the pipe end to 1100 °C (2012 °F) before forging. Induction is often used to heat multiple pipes in a single channel coil, or sequentially in a multi-position coil that produces one pipe-end every 150 seconds. These heating methods provide the time required for the heat to travel through the pipe wall, yet meet the 180 seconds floor-to-floor cycle time.
Ambrell induction heating systems allow the depth and rate of the heating to be precisely controlled, delivering the ideal temperature and timing for each step in the process, while meeting the 180 seconds floor to floor time cycle.
Tool Post Post Welding Heat Treating
After friction or arc welding of the tool post to the pipe end, the weld and surrounding pipe is brittle and requires a three-step heat treating process to toughen the joint area:
- Stress Relief: A 100mm (3.9”) wide band is heated to 700 °C (1292 °F) to stress relieve the weld area.
- Austenitization: A 25mm (1”) wide band is heated to 900 °C (1652 °F) for austenetising. The temperature through the pipe wall must be consistent prior to quenching.
- Through-Tempering:A 50mm (2”) band around the weld joint is heated to 675 °C (1247 °F) for through-tempering to produce the correct drill pipe toughness.
Heat Treating Ends of Thin Walled Mineral Drill Pipe
Both the internal and external threaded ends of mineral drill pipes are heat treated and surface hardened to provide a tough tube-end and to minimize wear during the repeated connecting and disconnecting during the drilling process.
Outside and inside temperatures during the annealing process on a 100mm band around the Tool box weld on a 126mm diameter pipe.
Austenitising 126mm Diameter Pipe
Through curie heating with inside and outside pipe 900 °C temperatures consistent before quenching.
Brazing Diamond or Carbide Inserts onto Oil and Gas Well Drill Bits
Oil and Gas Well Drill Bits
In drill bit manufacturing operations, multiple tool inserts (typically between 40 and 60) are individually brazed onto a single drill bit. These inserts may be a polycrystaline diamond compact (PDC) or tungsten carbide inserts (TCI)
Induction heating is an excellent technique for pre-heating the drill bit to 600 °C (1100 °F) in preparation for the torch brazing of the diamond inserts.
Drill bits come in a range of different sizes ranging from 8-20” (203-508mm) diameter. It takes 10-30 minutes for the heat to fully soak through the drill bit, which prepares the insert area for the brazing process. The torch is then used to raise the temperature of each individual joint to 790 °C (1454 °F) to flow the braze.
The PDC or TCI inserts are the cutting portion of the drilling tool, so they will wear out with use. Induction heating is used in the reclaiming process to heat up the drill bit, which allows the inserts to be removed for rebuilding the drill bit. (The inserts image is courtesy of U.S. Synthetics, Orem, UT.)
The insert’s brazing silver and copper “eutectic alloy” has a melting temperature of 790 °C (1454 °F), well below the melting temperature of silver or copper. This lower melt temperature prevents overheating of the diamond bit during brazing, yet still results in a strong joint to the drill bit.
Ambrell Induction Heating Systems at a Glance
Ambrell offers a wide power and frequency range with its EASYHEAT and EKOHEAT systems. So, whether your tube or pipe application is large or small, Ambrell can help you maximize cost efficiencies and productivity.
Ambrell’s systems are versatile with multiple capacitor and tap transformer configurations. They offer efficient power conversion, which minimizes energy expenses. They are also user-friendly, offer agile frequency tuning for repeatable heating, and can be easily integrated into your process thanks to their small footprint.
Systems include:
- Ease of integration into production processes with a portable workhead – up to 30m in some systems
- Wider frequency ranges allow more tubes and pipes of varying specifications to be heated with the same power supply
- Multiple capacitor and tap transformer configurations for a more versatile system than the competi-tion
- Agile frequency tuning for accurate, repeatable heating
- Efficient power conversion minimizes energy expenses
- Expert coil designs that maximize power delivery and save production time
- User-friendly operator interface in five languages (EN, ES, FR, DE, IT)
Отправить запрос
Вы заинтересованы в этом продукте? Вам нужна дополнительная информация или индивидуальные расценки?
Свяжитесь с нами
Вы должны быть зарегистрированы
Tube and Pipe Coating Curing
Ambrell induction heating solutions are fast, efficient choices for all stages of the curing operation.
In preparation for coating, induction heating is used to remove surface moisture from pipes, preheating the pipe to the correct temperature for coating. Then – depending on the type of polymeric coating applied – the tube or pipe is heated to 150-300 °C (302-572°F) for curing the coating.
In addition to requiring less floor space than traditional furnaces and ovens, induction systems offer ergonomic benefits, are environmentally friendly, and have the unique capacity to selectively heat only portions of a tubular product.
Beyond these operational benefits, induction heating also delivers a higher quality coating solution. Unlike furnaces that rely on heating the coating first, induction heats the metal substrate beneath the coating – curing the coating from the inside out – leaving the surface soft and allowing solvents to evaporate and any outgassing to occur. Removing coatings to recover tubes and pipes for re-coating is another common use for induction heating. Typically, the pipe is heated to about 200 °C (392 °F), which breaks the bond between the surface and coating, allowing the coating to be peeled off. Using this method is more environmentally friendly than alternative methods of burning off or grinding off the coating.
Pre- and Post-Weld Heating
With the use of more thin-wall steel alloy pipes in today’s oil and gas pipelines, manufacturers and installers are turning to the fast, accurate and uniform heating of Ambrell induction heating systems. During the process of butt welding, induction heating is commonly used to preheat the joint area to 150-200 °C (302-392 °F) to prepare the area for a consistent quality weld. After welding, the joint area is heated to 600-650 °C (1112-1202 °F) for thermal stress relief of the weld area. Traditional gas flame and resistance heating systems are often impractical when these higher temperatures are required. Not only are they too slow to meet the cycle times demanded by the industry, but also the heating can be inaccurate and can lack uniformity around the full circumference and bandwidth of the weld joints.
Other benefits of induction heating include:
- Variable control over temperature/time parameters
- Minimal damage to factory coating, and no deleterious surface residues
- No open flames or exposed heating elements
- Reduces energy costs, and eliminates the need for large gas storage area
Hot Pipe Bending
Induction heating is the preferred heating method for bending of larger thicker walled pipes. This is due to the focused narrow band heating offered by the induction process with the resulting higher quality bends with lower quality and wall thinning than other bending methods. Because of this quality and accuracy, induction hot pipe bending is the preferred alternative to traditional fit-and-weld procedures, and can help companies meet the rigorous safety demands of the chemical and energy industries. Ambrell induction heating systems are available in the frequency and power levels to optimally heat any pipe for hot bending. Typically, induction hot bending is used on pipes with diameters from 2” (50mm) to 36” (915 mm), with wall thicknesses from Schedule 5 up to 2.5” (64mm).
Hot pipe bending with induction involves placing an induction heating coil around the pipe at the bend point, and heating a 1” (25mm) section of the pipe to 1000 °C (1832 °F). With the pipe at temperature, pressure is applied by a bending arm to bend it into the desired shape. Air and water quenches are used before and after the heat zone to promote bending solely at the hot zone.
Induction heating is the preferred heating method for bending larger thick-walled pipes used in the chemical and power generating industries.
Drill Pipe Heat Treatment
Drill Pipe Manufacturing
Ambrell supplies induction heating systems to companies that manufacture oil and mineral drill pipe to meet the requirements of API 5DP and GOST R 50278. Induction heating offers many benefits over flame or resistance heating during the manufacturing processes in drill pipe heat treating and welding of the tool posts onto the pipe ends, including:
- Consistency: Heat is generated within the part for precise, rapid, even heating
- Quality: Temperature variations that are seen in flame heating are eliminated
- Productivity: Faster heating enables single-part processing
- Safe: No exposed flame for a safer working environment
- Economical: Heat is applied only where it is needed
Upsetting or Forging Process for Wall Thickening
Drill pipe ends are thickened by heating the pipe end to 1100 °C (2012 °F) before forging. Induction is often used to heat multiple pipes in a single channel coil, or sequentially in a multi-position coil that produces one pipe-end every 150 seconds. These heating methods provide the time required for the heat to travel through the pipe wall, yet meet the 180 seconds floor-to-floor cycle time.
Ambrell induction heating systems allow the depth and rate of the heating to be precisely controlled, delivering the ideal temperature and timing for each step in the process, while meeting the 180 seconds floor to floor time cycle.
Tool Post Post Welding Heat Treating
After friction or arc welding of the tool post to the pipe end, the weld and surrounding pipe is brittle and requires a three-step heat treating process to toughen the joint area:
- Stress Relief: A 100mm (3.9”) wide band is heated to 700 °C (1292 °F) to stress relieve the weld area.
- Austenitization: A 25mm (1”) wide band is heated to 900 °C (1652 °F) for austenetising. The temperature through the pipe wall must be consistent prior to quenching.
- Through-Tempering:A 50mm (2”) band around the weld joint is heated to 675 °C (1247 °F) for through-tempering to produce the correct drill pipe toughness.
Heat Treating Ends of Thin Walled Mineral Drill Pipe
Both the internal and external threaded ends of mineral drill pipes are heat treated and surface hardened to provide a tough tube-end and to minimize wear during the repeated connecting and disconnecting during the drilling process.
Outside and inside temperatures during the annealing process on a 100mm band around the Tool box weld on a 126mm diameter pipe.
Austenitising 126mm Diameter Pipe
Through curie heating with inside and outside pipe 900 °C temperatures consistent before quenching.
Brazing Diamond or Carbide Inserts onto Oil and Gas Well Drill Bits
Oil and Gas Well Drill Bits
In drill bit manufacturing operations, multiple tool inserts (typically between 40 and 60) are individually brazed onto a single drill bit. These inserts may be a polycrystaline diamond compact (PDC) or tungsten carbide inserts (TCI)
Induction heating is an excellent technique for pre-heating the drill bit to 600 °C (1100 °F) in preparation for the torch brazing of the diamond inserts.
Drill bits come in a range of different sizes ranging from 8-20” (203-508mm) diameter. It takes 10-30 minutes for the heat to fully soak through the drill bit, which prepares the insert area for the brazing process. The torch is then used to raise the temperature of each individual joint to 790 °C (1454 °F) to flow the braze.
The PDC or TCI inserts are the cutting portion of the drilling tool, so they will wear out with use. Induction heating is used in the reclaiming process to heat up the drill bit, which allows the inserts to be removed for rebuilding the drill bit. (The inserts image is courtesy of U.S. Synthetics, Orem, UT.)
The insert’s brazing silver and copper “eutectic alloy” has a melting temperature of 790 °C (1454 °F), well below the melting temperature of silver or copper. This lower melt temperature prevents overheating of the diamond bit during brazing, yet still results in a strong joint to the drill bit.
Ambrell Induction Heating Systems at a Glance
Ambrell offers a wide power and frequency range with its EASYHEAT and EKOHEAT systems. So, whether your tube or pipe application is large or small, Ambrell can help you maximize cost efficiencies and productivity.
Ambrell’s systems are versatile with multiple capacitor and tap transformer configurations. They offer efficient power conversion, which minimizes energy expenses. They are also user-friendly, offer agile frequency tuning for repeatable heating, and can be easily integrated into your process thanks to their small footprint.
Systems include:
- Ease of integration into production processes with a portable workhead – up to 30m in some systems
- Wider frequency ranges allow more tubes and pipes of varying specifications to be heated with the same power supply
- Multiple capacitor and tap transformer configurations for a more versatile system than the competi-tion
- Agile frequency tuning for accurate, repeatable heating
- Efficient power conversion minimizes energy expenses
- Expert coil designs that maximize power delivery and save production time
- User-friendly operator interface in five languages (EN, ES, FR, DE, IT)
Не удаётся отправить вашу оценку отзыва
Пожаловаться на комментарий
Жалоба отправлена
Не удаётся отправить вашу жалобу
Оставьте свой отзыв
Отзыв отправлен
Не удаётся отправить отзыв