Ви повинні увійти в систему
-
WróćX
-
компоненти
-
-
Category
-
Напівпровідники
- Діоди
- Тиристори
-
Електро-ізольовані модулі
- Електроізольовані модулі | ВІШАЙ (ІЧ)
- Електроізольовані модулі | INFINEON (EUPEC)
- Електроізольовані модулі | Семікрон
- Електроізольовані модулі | POWEREX
- Електроізольовані модулі | IXYS
- Електроізольовані модулі | ПОСЕЙКО
- Електроізольовані модулі | ABB
- Електроізольовані модулі | ТЕХСЕМ
- Przejdź do podkategorii
- Випрямні мости
-
Транзистори
- Транзистори | GeneSiC
- Модулі SiC MOSFET | Mitsubishi
- Модулі SiC MOSFET | STARPOWER
- Модулі ABB SiC MOSFET
- Модулі IGBT | MITSUBISHI
- Транзисторні модулі | MITSUBISHI
- Модулі MOSFET | MITSUBISHI
- Транзисторні модулі | ABB
- Модулі IGBT | POWEREX
- Модулі IGBT | INFINEON (EUPEC)
- Напівпровідникові елементи з карбіду кремнію (SiC)
- Przejdź do podkategorii
- Драйвери
- Блоки потужності
- Przejdź do podkategorii
-
Електричні перетворювачі
-
Перетворювачі струму / датчики струму ф. LEM
- Перетворювачі струму із зворотним зв'язком (C/L) ф. LEM
- Перетворювачі струму із зворотним зв'язком (O/L) ф. LEM
- Перетворювачі струму з уніполярним живленням ф.LEM
- Перетворювачі по технології Eta ф. LEM
- Високоточні перетворювачі струму серії LF xx10
- Перетворювачі струму серії LH
- HOYS і HOYL - призначені для кріплення безпосередньо на провідниковій рейці
- Перетворювачі струму в технології SMD серій GO-SME та GO-SMS
- АВТОМОБІЛЬНІ перетворювачі струму
- Przejdź do podkategorii
-
Перетворювачі напруги | ЛЕМ
- Перетворювачі напруги серії LV
- Перетворювачі напруги серії DVL
- Прецизійні перетворювачі струму з подвійним магнітним осердям серії CV
- Тяговий перетворювач напруги DV 4200/SP4
- Перетворювачі напруги серії DVM
- Перетворювач напруги - DVC 1000-P
- Перетворювачі напруги - серія DVC 1000
- Przejdź do podkategorii
- Точні перетворювачі струму | LEM
- Przejdź do podkategorii
-
Перетворювачі струму / датчики струму ф. LEM
-
Пасивні компоненти (конденсатори, резистори, запобіжники, фільтри)
- Резистори
-
Запобіжники
- Мініатюрні запобіжники для електронних плат серії ABC і AGC
- Швидкі трубчасті запобіжники
- Повільні запобіжники з характеристиками GL / GG і AM
- Ультрашвидкі плавкі запобіжники
- Швидкі запобіжники: британський та американський стандарт
- Швидкі запобіжники. Європейський стандарт
- Тягові запобіжники
- Високовольтні запобіжні
- Przejdź do podkategorii
-
Конденсатори
- Конденсатори для електродвигунів
- Електролітичні конденсатори
- Снабберні конденсатори
- Конденсатори потужності
- Конденсатори для DC ланцюгів
- Конденсатори для компенсації пасивної потужності
- Високовольтні конденсатори
- Конденсатори великої потужності для індукційного нагріву
- Конденсатори для зберігання імпульсів та енергії
- Конденсатори DC LINK
- Конденсатори для ланцюгів змінного / постійного струму
- Przejdź do podkategorii
- EMI фільтри
- Іоністори (супер-конденсатори)
-
Захист від стрибків напруги
- Захист від перенапруги для коаксіального застосування
- Захист від перенапруг для систем відеоспостереження
- Захист від перенапруги для силових кабелів
- Розрядники перенапруги для світлодіодів
- Розрядники перенапруги для фотоелектрики
- Захист системи зважування
- Захист від перенапруги для Fieldbus
- Przejdź do podkategorii
- Przejdź do podkategorii
-
Реле та контактори
- Реле та контактори - теорія
- Напівпровідникові реле AC 3-фазні
- Напівпровідникові реле DC
- Контролери, системи управління та аксесуари
- Системи плавного пуску і реверсивні контактори
- Електромеханічні реле
- Контактори
- Оборотні перемикачі
-
Напівпровідникові реле AC 1-фазні
- РЕЛЕ AC 1-ФАЗНЫЕ СЕРИИ 1 D2425 | D2450
- Однофазное реле AC серии CWA и CWD
- Однофазное реле AC серии CMRA и CMRD
- Однофазное реле AC серии PS
- Реле AC двойное и четверное серии D24 D, TD24 Q, H12D48 D
- Однофазні твердотільні реле серії gn
- Однофазні напівпровідникові реле змінного струму, серія ckr
- Однофазні реле змінного струму ERDA та ERAA для DIN-рейки
- Однофазні реле змінного струму для струму 150А
- Подвійні твердотільні реле, інтегровані з радіатором для DIN-рейки
- Przejdź do podkategorii
- Напівпровідникові реле AC 1-фазні для друкованих плат
- Інтерфейсні реле
- Przejdź do podkategorii
- Індукційні компоненти
- Радіатори, варистори, термічний захист
- Вентилятори
- Кондиціонери, обладнання для шаф електричних, охолоджувачі
-
Батареї, зарядні пристрої, буферні блоки живлення та інвертори
- Батареї, зарядні пристрої - теоретичний опис
- Літій-іонні батареї. Спеціальні батареї. Система управління акумулятором (BMS)
- Батареї
- Зарядні пристрої та аксесуари
- Резервне джерело живлення ДБЖ та буферні джерела живлення
- Перетворювачі та аксесуари для фотоелектрики
- Зберігання енергії
- Паливні елементи
- Літій-іонні акумулятори
- Przejdź do podkategorii
-
Автоматика
- Futaba Drone Parts
- Кінцеві вимикачі, Мікровимикачі
- Датчики Перетворювачі
- Пірометри
- Лічильники, Реле часу, Панельні вимірювальні прилади
- Промислові захисні пристрої
- Світлові і звукові сигнальні установки
- Термокамери, Тепловізори
- LED-екрани
- Керуюча апаратура
-
Реєстратори
- Реєстратори температури з записом на стрічку і з цифровим індикатором - AL3000
- Мікропроцесорні реєстратори з екраном LCD серія KR2000
- Реєстратор KR5000
- Вимірювач з функцією реєстрації вологості і температури HN-CH
- Експлуатаційні матеріали для реєстраторів
- Компактний графічний реєстратор 71VR1
- Реєстратор KR 3000
- Реєстратор PC серії R1M
- Реєстратор PC серії R2M
- Реєстратор PC, USB, 12 ізольованих входів – RZMS
- Реєстратор PC, USB, 12 ізольованих входів – RZUS
- Przejdź do podkategorii
- Przejdź do podkategorii
-
Провід, літцендрат, гофровані рукави, гнучкі з'єднання
- Дроти
- Багатожильні дроти Lica
-
Кабелі і дроти для спеціальних застосувань
- Подовжувальні та компенсаційні дроти
- Дроти для термопар
- Приєднувальні дроти для датчиків PT
- Багатожильні дроти темп. -60C до +1400C
- Дроти середньої напруги
- Дроти запалювання
- Нагрівальні дроти
- Одножильні дроти темп. -60C до +450C
- Залізничні дроти
- Нагрівальні дроти для вибухонебезпечних зон
- Przejdź do podkategorii
- Оболонки
-
Плетені кабелі
- Плоскі плетені кабелі
- Круглі плетені кабелі
- Дуже гнучкі плетені кабелі - плоскі
- Дуже гнучкі плетені кабелі - круглі
- Мідні циліндричні плетені кабелі
- Мідні циліндричні плетені кабелі і кожуха
- Гнучкі заземлювальні стрічки
- Циліндричні плетені дроти з лудженої і нержавіючої сталі
- Мідні ізольовані плетені дроти PCV - температура до 85 градусів C
- Плоскі алюмінієві плетені дроти
- З'єднувальний набір - плетені дроти і трубки
- Przejdź do podkategorii
- Аксесуари для тяги
- Кабельні наконечники
- Ізольовані еластичні шини
- Багатошарові гнучкі шини
- Системи прокладки кабелю (PESZLE)
- Шланги
- Przejdź do podkategorii
- Zobacz wszystkie kategorie
-
Напівпровідники
-
-
- Постачальники
-
додатки
- Energy bank
- ІНДУКЦІЙНИЙ НАГРІВ
- Автоматизація HVAC
- Верстати з ЧПУ
- ВИМІРЮВАННЯ ТА РЕГУЛЮВАННЯ ТЕМПЕРАТУРИ
- Вимірювання та регулювання температури
- ГІРНИЧОДОБУВНА ПРОМИСЛОВІСТЬ, СТАЛЕЛИВАРНІ КОМБІНАТИ, ГЗК
- ДВИГУНИ І ТРАНСФОРМАТОРИ
- ЕНЕРГЕТИКА
- ЗВАРЮВАЛЬНІ АПАРАТИ
- КОМПЛЕКТУЮЧІ ДЛЯ РОЗПОДІЛЬНИХ, ТЕЛЕКОМУНІКАЦІЙНИХ ШАФ І ШАФ УПРАВЛІННЯ
- МАШИНИ ДЛЯ ДЕРЕВООБРОБКИ ТА СУШІННЯ ДЕРЕВИНИ
- ПОЛІГРАФІЯ
- ПРИВІД ПОСТІЙНОГО І ЗМІННОГО СТРУМУ
- ПРИЛАДИ ТА ОБЛАДНАННЯ ДЛЯ ВИБУХОНЕБЕЗПЕЧНИХ ЗОН (EX)
- ПРИСТРОЇ БЕЗПЕРЕБІЙНОГО ЖИВЛЕННЯ (UPS) І ВИПРЯМЛЯЧІ
- ПРОМИСЛОВІ ЗАСОБИ ЗАХИСТУ
- ПРОМИСЛОВА АВТОМАТИКА
- ТЕРМОФОРМОВОЧНІ МАШИНИ
- ТЯГОВИЙ ПРИВІД
-
монтаж
-
-
Montaż urządzeń
- Встановлення шаф
- Проектування та складання шаф
- Монтаж систем електропостачання
- Компоненти
-
Машини, створені на замовлення
- Автомобільна промисловість
- Фармацевтична промисловість
- Целюлозно-паперова промисловість
- Харчова промисловість і виробництво напоїв
- Гірничо-добувна промисловість
- Хімічна та нафтохімічна промисловість
- Ливарне виробництво
- Промисловість деревини та виробів з неї
- Промислова очистка води
- Przejdź do podkategorii
- НДДКР
-
Промислові тестери
- Силові напівпровідникові тестери
- Тестери електричних апаратів
- Тестери варисторів та розрядників перенапруг
- Автомобільний тестер запобіжників
- Тестер Qrr для вимірювання перехідного заряду в тиристорах та силових діодах
- Випробувач ротора автоматичних вимикачів серії FD
- Тестер перевірки пристроїв залишкового струму
- Тестер калібрування реле
- Випробувач візуальних випробувань поршневих штоків газових пружин
- Силовий тиристорний вимикач
- Тестер розбиття сітки
- Przejdź do podkategorii
- Zobacz wszystkie kategorie
-
-
-
Індуктори
-
-
Modernizacja induktorów
- Ремонт використаних дроселів
- Модернізація дроселів
-
Виробництво нових індукторів
- Загартовування колінчастих валів
- Загартовування зубів стрічкової пилки
- Нагрівання елементів перед прилипанням
- Загартовування колійних доріжок підшипників маточини коліс
- Загартовування компонентів трансмісії приводу
- Загартовування ступінчастих валів
- Нагрівання в стисних швах
- Скануюче затвердіння
- М'яка пайка
- Нагрівачі заготовок
- Przejdź do podkategorii
- База знань
- Zobacz wszystkie kategorie
-
-
-
Індукційні прилади
-
-
Urządzenia indukcyjne
-
Індукційні генератори опалення
-
Індукційні генератори опалення Ambrell
- Генератори: Потужність 500 Вт, частота 150-400 кГц
- Генератори: Потужність 1,2 - 2,4 кВт, частота 150 - 400 кГц
- Генератори: Потужність 4,2 - 10 кВт, частота 150 - 400 кГц
- Генератори: Потужність 10 - 15 кВт, частота 50 - 150 кГц
- Генератори: Потужність 30-45 кВт, частота 50-150 кГц
- Генератори: Потужність 65-135 кВт, частота 50-150 кГц
- Генератори: Потужність 180-270 кВт, частота 50-150 кГц
- Генератори: Потужність 20-35-50 кВт, частота 15-45 кГц
- Генератори: Потужність 75-150 кВт, частота 15-45 кГц
- Генератори: Потужність 200-500 кВт, частота 15-45 кГц
- Генератори: Потужність 20-50 кВт, частота 5-15 кГц
- Przejdź do podkategorii
- Індукційні генератори опалення Denki Kogyo
-
Індукційні генератори нагріву JKZ
- Генератори серії CX, частота: 50-120 кГц, потужність: 5-25 кВт
- Генератори SWS, частота: 15-30 кГц, потужність: 25-260 кВт
- Генератори (печі) для формування та ковки серії MFS, частота: 0,5-10 кГц, потужність: 80-500 кВт
- Плавильні печі MFS, частота: 0,5-10кГц, потужність: 70-200кВт
- Генератори UHT-серії, частота: 200-400 кГц, потужність: 10-160 кВт
- Przejdź do podkategorii
- Генератори ламп для індукційного нагріву
- Індукційні генератори опалення Himmelwerk
- Przejdź do podkategorii
-
Індукційні генератори опалення Ambrell
- Ремонт та модернізація
- Периферія
-
Програми
- Медичні програми
- Застосування для автомобільної промисловості
- М'яка пайка
- Паяння
- Паяння алюмінію
- Пайка магнітних інструментів з нержавіючої сталі
- Точна пайка
- Паяння в захисній атмосфері
- Пайка латунних та сталевих пробок радіатора
- Паяння спечених карбідів
- Пайка мідного наконечника і дроту
- Przejdź do podkategorii
- База знань
- Zobacz wszystkie kategorie
-
Індукційні генератори опалення
-
-
-
Сервіс
-
-
asd
- Сервісне обслуговування промислових охолоджувачів води та кондиціонерів
- Ремонт і модернізація машин
-
Ремонт и обслуживание силовой электроники, электроники и устройств промышленной автоматики
- Сервісне обслуговування інверторів, сервоприводів та регуляторів постійного струму
- Сервісне обслуговування фотоелектричних інверторів
- Сервіс гальванічних випрямлячів FLEXKRAFT
- Пропозиція ремонту обладнання
- Список відремонтованих пристроїв
- Ремонт машин для виготовлення банкнотних фольг
- Правила ремонту приладів
- Przejdź do podkategorii
- Високовольтні джерела живлення для електрофільтрів
- Промислові принтери і етикетировочні машини
- Certyfikaty / uprawnienia
- Zobacz wszystkie kategorie
-
-
- Контакт
- Zobacz wszystkie kategorie
7th Generation NX type (NX7) Converter Inverter Brake (CIB) Modules
7th Generation NX type (NX7) Converter Inverter Brake (CIB) Modules
Developed to address the requirements of high performance drives by utilizing an innovative packaging concept and an advanced chip technology.
Applications such as elevator drives or servomotors have several special requirements. One on hand, high efficiency is important, while on the other hand, the inverter unit be resilient to the different types of load cycling. Furthermore, the inverter must be designed as compact as possible. NX7 CIB modules aim to address these challenges.
By Toshinari Hirai and Narender Lakshmanan, Mitsubishi Electric Europe B.V
Advanced Chip Technology Combined with a New Packaging Concept:
Each CIB module consists of an integrated 3 phase inverter part, a converter (3 ph diode rectifier) part and a brake chopper part. The line-up of the latest NX7 CIB modules is shown in Figure 1. The NX7 CIB modules utilize the latest 7th generation CSTBT™ IGBT along with the RFC (Relaxed Field of Cathode) diodes. The electrical characteristics of the new thin wafer 7th generation chips have been tuned for the reduction of overall power losses.
Figure 1: Line-up of the NX7 CIB Modules. NOTE: Pressfit and PCTIM options available.
Figure 2: Cross section of the NX7 package versus a conventional module package.
The NX7 CIB employs a new packaging concept – the SLC (SoLid Cover) Technology which includes an insulated metal baseplate structure (refer to Figure 2). The conventional baseplate has been replaced by an insulated metal baseplate structure where the metal baseplate contains an organic insulation layer directly bonded to it. Therefore the conventional substrate solder between metal baseplate and isolation ceramic has been eliminated. The soft silicone gel of the conventional structure is replaced by the hard DP-resin (direct potting resin) [1].
Minimizing Losses and Maximizing Performance:
Operating the inverter at elevated switching frequencies helps in reducing the audible noise, hence low loss operation even at high switching frequencies is an important capability for applications such as elevators. In addition, limiting the IGBT chip temperature rise during low rotation speed (low output frequency) operation is a key requirement.
Figure 3 indicates the overall power loss comparison of an NX7 CIB module (CM50MXUA-24T) with a previous 6th gen. IGBT module (CM50MXA-24S) considering different switching frequencies and a low output current frequency of fout=5Hz. The benefit in terms of pow-
Figure 3: Power loss and junction temperature performance of the NX7 CIB vs conventional module. Conditions: VCC = 600V, Io = 24 Arms, PF = 0.9, M = 1, fout = 5 Hz, Data @ Tj = 125°C.W
er loss between a conventional module and an NX7 CIB module increases with increase in switching frequency. This can be attributed to the optimization in the trade-off between the switching losses and the ON state losses in the new 7th generation chip technology. A combination of loss reduction and the low thermal resistance (chip to case) offered by the 7th generation chip technology ensures that the maximum junction temperature can be reduced by utilizing the NX7 CIB module. The analysis indicated in Figure 3 has been carried out considering a target switching dv⁄dt (max)= 10 kV/μs.
Designed for High Reliability:
Intermittent operation is a characteristic feature of applications such as elevators. The impact of load cycling can be categorized into two types of cycling phenomena: power cycling and thermal cycling. Power cycling refers to a cycling of the junction temperature which affects the reliability of the chip-tobond wire contact whereas thermal cycling refers to the cycling of baseplate temperature which conventionally affect the solder layer connecting the isolation substrate and the baseplate. But due to the elimination of the ceramic substrate and the solder layer, the limitation pertaining to thermal cycling is not present in NX7 CIB modules.
Case 1: Extended Loading Conditions (temperature swing at the heatsink and case):
It is common for applications such as elevators to experience operation cycles where the heatsink temperature rises to an allowable point and then falls back to the ambient temperature. Session involving continuous operation which would generate a temperature swing at the heatsink, would also involve temperature swings at the case of the power module and at the chip surface (junction). An example of such operation is represented in Figure 4. For this analysis, the Mitsubishi Electric 6th generation modules represent the conventional modules.
The following points are the key conclusions from Figure 4:
- Bottleneck identification: For conventional modules which utilize a baseplate solder layer, thermal cycling performance is the lifetime limitation factor for long operation cycles due to the degradation of the solder layer under such conditions.
- Solution: The bottleneck (solder layer) has been eliminated in the new NX7 module due to the adoption of the IMB structure.
Case 2: Short term loading conditions (temperature swing predominantly at the chip):
Operating cycles (in the range of a few seconds) which generate temperature swings only at IGBT chip (ΔTj) affect the reliability of the chip to bond wire contact. The amplitude of the ΔTj is the deciding factor with regards to the power cycling lifetime. This point has been addressed by employing the low loss 7th generation chip technology
Figure 4: Lifetime estimation for extended duration loading (Conventional module vs NX7 CIB).
Figure 5: Compactness by heatsink reduction. Conditions: Vcc = 600V, fc = 12 kHz, fout = 5 Hz, M = 1, PF = 0.9, Ic = 24 Arms, Ta = 30 °C, data @ Tj = 125 °C
Figure 6: Optimization of terminal temperature in the NX7 CIB module.
in combination with the optimized chip to case thermal resistance in the NX7 module. This combination ensures that for the same operating condition, the corresponding ΔTj is lower (compared the performance of the conventional module). This tendency can be understood from the following results indicating power cycling capability based on the conditions mentioned in Figure 3 (for fc = 12 kHz):
- Conventional CIB (CM50MXA-24S): ΔTj = 54.52 K: 600 thousand cycles (approx.)
- NX7 CIB (CM50MXUA-24T): ΔTj = 36.64 K:WWWW 6 million cycles (approx.)
Summary – Overall lifetime enhancement
Overall improvement in lifetime has been ensured by the following two-step strategy:
- Elimination of the thermal cycling bottleneck
- Reduction of ΔTj to achieve better power cycling capability
Compact Design:
To achieve a compact design, several important considerations have to be made. The following points illustrate the advantage offered by adopting an NX7 CIB module.
1. Since the NX7 CIB module exhibits an improved loss performance and superior thermal performance (refer Figure 4), the designer can shrink the size of the heatsink in order to achieve an overall compact design. The example presented in Figure 5 illustrates a 35% reduction of the heatsink without causing an increase in the maximum junction temperature.
2. To achieve compactness, the classical copper busbar structure can be replaced by a PCB which would be connected to the terminals of the power module via pressfit or soldering. The challenge with this approach is that, due to high current density at the terminal pins, the temperature developed at the terminal could impose a limitation on the maximum operating current. This possibility has been taken into consideration while developing the NX7 CIB and accordingly the pin structure has been designed to reduce the temperature developed at the terminal during operation. As indicated in Figure 6, the temperature rise developed at the terminals of the Mitsubishi module (NX7 CIB) is lower in comparison with a competitor’s design. The improved thermal conductivity of the potting material (DP-resin) versus gel is an added advantage.
Scalable solutions:
The NX7 CIB line-up allows the designer to develop platform solutions – one mechanical design for multiple power ratings. For example, (refer Figure 1), in the 1200V category, the 45mm x 107.5mm module is available in 3 different current ratings (35A, 50A and 75A and the 62mm x 122mm module is available in 3 different current ratings (75A, 100A, 150A). This allows the designer to develop one mechanical design for 3 different power levels.
Conclusion:
The requirements of applications such as elevator drives have been taken into consideration while developing the NX7 CIB module. The unique combination of the SLC technology packing and the 7th generation chip technology allows the designer to develop an efficient, reliable and a compact inverter that can be used as a platform solution for multiple power levels.
References:
[1] Thomas Radke, et al: Enhanced IGBT Module Power Density Utilizing the Improved Thermal Conductivity of SLCTechnology, Bodo’s Power systems, June 2016
[2] Thomas Radke, et al : New Horizons in Thermal Cycling Capability Realized with the 7th gen. IGBT module Based on SLC-Technology, Bodo’s Power systems, May 2017
[3] MELCOSIM: IGBT thermal and loss simulation software, available at www. mitsubishielectric.com/semiconductors/ simulator/
Leave a comment